Improving tag recommendation using social networks

Adam Rae, Börkur Sigurbjörnsson, R. V. Zwol
{"title":"Improving tag recommendation using social networks","authors":"Adam Rae, Börkur Sigurbjörnsson, R. V. Zwol","doi":"10.5555/1937055.1937077","DOIUrl":null,"url":null,"abstract":"In this paper we address the task of recommending additional tags to partially annotated media objects, in our case images. We propose an extendable framework that can recommend tags using a combination of different personalised and collective contexts. We combine information from four contexts: (1) all the photos in the system, (2) a user's own photos, (3) the photos of a user's social contacts, and (4) the photos posted in the groups of which a user is a member. Variants of methods (1) and (2) have been proposed in previous work, but the use of (3) and (4) is novel. \n \nFor each of the contexts we use the same probabilistic model and Borda Count based aggregation approach to generate recommendations from different contexts into a unified ranking of recommended tags. We evaluate our system using a large set of real-world data from Flickr. We show that by using personalised contexts we can significantly improve tag recommendation compared to using collective knowledge alone. We also analyse our experimental results to explore the capabilities of our system with respect to a user's social behaviour.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

In this paper we address the task of recommending additional tags to partially annotated media objects, in our case images. We propose an extendable framework that can recommend tags using a combination of different personalised and collective contexts. We combine information from four contexts: (1) all the photos in the system, (2) a user's own photos, (3) the photos of a user's social contacts, and (4) the photos posted in the groups of which a user is a member. Variants of methods (1) and (2) have been proposed in previous work, but the use of (3) and (4) is novel. For each of the contexts we use the same probabilistic model and Borda Count based aggregation approach to generate recommendations from different contexts into a unified ranking of recommended tags. We evaluate our system using a large set of real-world data from Flickr. We show that by using personalised contexts we can significantly improve tag recommendation compared to using collective knowledge alone. We also analyse our experimental results to explore the capabilities of our system with respect to a user's social behaviour.
使用社交网络改进标签推荐
在本文中,我们解决了为部分注释的媒体对象推荐额外标签的任务,在我们的例子中是图像。我们提出了一个可扩展的框架,可以使用不同的个性化和集体上下文的组合来推荐标签。我们将来自四个上下文的信息组合在一起:(1)系统中的所有照片,(2)用户自己的照片,(3)用户社交联系人的照片,以及(4)用户所属的组中发布的照片。方法(1)和(2)的变体已在以前的工作中提出,但(3)和(4)的使用是新颖的。对于每个上下文,我们使用相同的概率模型和基于Borda计数的聚合方法从不同的上下文生成推荐到一个统一的推荐标签排名。我们使用来自Flickr的大量真实数据来评估我们的系统。我们表明,与单独使用集体知识相比,通过使用个性化上下文,我们可以显着提高标签推荐。我们还分析了我们的实验结果,以探索我们的系统在用户社交行为方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信