Exact solution and instability for geophysical edge waves

Fahe Miao, Michal Feckan, Jinrong Wang
{"title":"Exact solution and instability for geophysical edge waves","authors":"Fahe Miao, Michal Feckan, Jinrong Wang","doi":"10.3934/cpaa.2022067","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We present an exact solution to the nonlinear governing equations in the <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present an exact solution to the nonlinear governing equations in the \begin{document}$ \beta $\end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.

地球物理边缘波的精确解和不稳定性
We present an exact solution to the nonlinear governing equations in the \begin{document}$ \beta $\end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信