CONVOLUTION OF TWO SINGULAR DISTRIBUTIONS: CLASSIC CANTOR TYPE AND RANDOM VARIABLE WITH INDEPENDENT NINE DIGITS

M. Pratsiovytyi, S. Ratushniak, Yu. Symonenko, D. Shpytuk
{"title":"CONVOLUTION OF TWO SINGULAR DISTRIBUTIONS: CLASSIC CANTOR TYPE AND RANDOM VARIABLE WITH INDEPENDENT NINE DIGITS","authors":"M. Pratsiovytyi, S. Ratushniak, Yu. Symonenko, D. Shpytuk","doi":"10.31861/bmj2022.02.16","DOIUrl":null,"url":null,"abstract":"We consider distribution of random variable $\\xi=\\tau+\\eta$, where $\\tau$ and $\\eta$ independent random variables, moreover $\\tau$ has classic Cantor type distribution and $\\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider distribution of random variable $\xi=\tau+\eta$, where $\tau$ and $\eta$ independent random variables, moreover $\tau$ has classic Cantor type distribution and $\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.
两个奇异分布的卷积:经典康托型和独立九位数随机变量
我们考虑随机变量$\xi=\tau+\eta$的分布,其中$\tau$和$\eta$是独立的随机变量,并且$\tau$具有经典的Cantor型分布,$\eta$是一个独立的同分布的随机数为9位表示的随机变量。通过对数字分布$\eta$的附加条件,给出了分布$\xi$的Cantor型奇异性的充分条件。为了证实这些陈述,在以$9$为基数和17个符号的字母表(一组数字)的数字系统中,对数字$x\in [0;2]$的表示进行了拓扑度量分析。这种表示的几何(位置和度量)由相应柱集的性质来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信