Typo-Robust Representation Learning for Dense Retrieval

Panuthep Tasawong, Wuttikorn Ponwitayarat, Peerat Limkonchotiwat, Can Udomcharoenchaikit, E. Chuangsuwanich, Sarana Nutanong
{"title":"Typo-Robust Representation Learning for Dense Retrieval","authors":"Panuthep Tasawong, Wuttikorn Ponwitayarat, Peerat Limkonchotiwat, Can Udomcharoenchaikit, E. Chuangsuwanich, Sarana Nutanong","doi":"10.48550/arXiv.2306.10348","DOIUrl":null,"url":null,"abstract":"Dense retrieval is a basic building block of information retrieval applications. One of the main challenges of dense retrieval in real-world settings is the handling of queries containing misspelled words. A popular approach for handling misspelled queries is minimizing the representations discrepancy between misspelled queries and their pristine ones. Unlike the existing approaches, which only focus on the alignment between misspelled and pristine queries, our method also improves the contrast between each misspelled query and its surrounding queries. To assess the effectiveness of our proposed method, we compare it against the existing competitors using two benchmark datasets and two base encoders. Our method outperforms the competitors in all cases with misspelled queries. Our code and models are available at https://github.com/panuthept/DST-DenseRetrieval.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.10348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dense retrieval is a basic building block of information retrieval applications. One of the main challenges of dense retrieval in real-world settings is the handling of queries containing misspelled words. A popular approach for handling misspelled queries is minimizing the representations discrepancy between misspelled queries and their pristine ones. Unlike the existing approaches, which only focus on the alignment between misspelled and pristine queries, our method also improves the contrast between each misspelled query and its surrounding queries. To assess the effectiveness of our proposed method, we compare it against the existing competitors using two benchmark datasets and two base encoders. Our method outperforms the competitors in all cases with misspelled queries. Our code and models are available at https://github.com/panuthept/DST-DenseRetrieval.
面向密集检索的打字鲁棒表示学习
密集检索是信息检索应用的基本组成部分。在现实环境中,密集检索的主要挑战之一是处理包含拼写错误的单词的查询。处理拼写错误查询的一种流行方法是最小化拼写错误查询与原始查询之间的表示差异。与只关注拼写错误查询和原始查询之间的对齐的现有方法不同,我们的方法还提高了每个拼写错误查询与其周围查询之间的对比度。为了评估我们提出的方法的有效性,我们使用两个基准数据集和两个基本编码器将其与现有的竞争对手进行比较。我们的方法在所有拼写错误查询的情况下都优于竞争对手。我们的代码和模型可在https://github.com/panuthept/DST-DenseRetrieval上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信