Shortest Processing Time First Algorithm for Hadoop

Laurent Bobelin, P. Martineau, Di Zhao, Haiwu He
{"title":"Shortest Processing Time First Algorithm for Hadoop","authors":"Laurent Bobelin, P. Martineau, Di Zhao, Haiwu He","doi":"10.1109/CSCloud.2016.12","DOIUrl":null,"url":null,"abstract":"Big data has revealed itself as a powerful tool for many sectors ranging from science to business. Distributed data-parallel computing is then common nowadays: using a large number of computing and storage resources makes possible data processing of a yet unknown scale. But to develop large-scale distributed big data processing, we have to tackle many challenges. One of the most complex is scheduling. As it is known to be an optimal online scheduling policy when it comes to minimize the average flowtime, Shortest Processing Time First (SPT) is a classic scheduling policy used in many systems. We then decided to integrate this policy into Hadoop, a framework for big data processing, and realize an implementation prototype. This paper describes this integration, as well as tests results obtained on our testbed.","PeriodicalId":410477,"journal":{"name":"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"427 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2016.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Big data has revealed itself as a powerful tool for many sectors ranging from science to business. Distributed data-parallel computing is then common nowadays: using a large number of computing and storage resources makes possible data processing of a yet unknown scale. But to develop large-scale distributed big data processing, we have to tackle many challenges. One of the most complex is scheduling. As it is known to be an optimal online scheduling policy when it comes to minimize the average flowtime, Shortest Processing Time First (SPT) is a classic scheduling policy used in many systems. We then decided to integrate this policy into Hadoop, a framework for big data processing, and realize an implementation prototype. This paper describes this integration, as well as tests results obtained on our testbed.
Hadoop的最短处理时间优先算法
从科学到商业,大数据已经成为许多领域的强大工具。分布式数据并行计算现在很常见:使用大量的计算和存储资源使得未知规模的数据处理成为可能。但要发展大规模分布式大数据处理,还需要解决许多挑战。其中最复杂的是日程安排。当涉及到最小化平均流时间时,它被认为是最优的在线调度策略,因此最短处理时间优先(SPT)是许多系统中使用的经典调度策略。然后我们决定将这个策略集成到Hadoop这个大数据处理框架中,并实现一个实现原型。本文描述了这种集成,以及在我们的测试平台上得到的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信