Depth estimation in monocular Breast Self-Examination image sequence using optical flow

John Anthony C. Jose, M. Cabatuan, E. Dadios, L. G. Gan Lim
{"title":"Depth estimation in monocular Breast Self-Examination image sequence using optical flow","authors":"John Anthony C. Jose, M. Cabatuan, E. Dadios, L. G. Gan Lim","doi":"10.1109/HNICEM.2014.7016220","DOIUrl":null,"url":null,"abstract":"In this paper, we study the depth estimation for image sequence with small displacements as in Breast Self Examination (BSE). We utilized its Lucas-Kanade optical flow vectors, the concept of divergence and focus of expansion to estimate the apparent depth level for each frame. Moreover, orientation binning is also introduced to supplement its invariance to translation. The experiment used an actual BSE performance and the results show its effectiveness in predicting palpation depth level. This algorithm has shown to be in realtime implementation with a frame rate of 30 frames per second that is very useful for implementing the computer vision-based BSE guidance system.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we study the depth estimation for image sequence with small displacements as in Breast Self Examination (BSE). We utilized its Lucas-Kanade optical flow vectors, the concept of divergence and focus of expansion to estimate the apparent depth level for each frame. Moreover, orientation binning is also introduced to supplement its invariance to translation. The experiment used an actual BSE performance and the results show its effectiveness in predicting palpation depth level. This algorithm has shown to be in realtime implementation with a frame rate of 30 frames per second that is very useful for implementing the computer vision-based BSE guidance system.
基于光流的单眼乳房自检图像序列深度估计
本文研究了乳腺自检(BSE)中小位移图像序列的深度估计问题。我们利用Lucas-Kanade光流矢量、发散和聚焦的概念来估计每帧的视深度。此外,还引入了方向分割,以补充其对平移的不变性。实验使用了一个实际的BSE性能,结果表明了该算法在预测触诊深度水平方面的有效性。该算法已被证明可以实时实现,帧率为30帧/秒,对实现基于计算机视觉的BSE制导系统非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信