{"title":"Contextual Statistics of Space-Time Ordered Features for Human Action Recognition","authors":"P. Bilinski, F. Brémond","doi":"10.1109/AVSS.2012.29","DOIUrl":null,"url":null,"abstract":"The bag-of-words approach with local spatio-temporal features have become a popular video representation for action recognition. Recent methods have typically focused on capturing global and local statistics of features. However, existing approaches ignore relations between the features, particularly space-time arrangement of features, and thus may not be discriminative enough. Therefore, we propose a novel figure-centric representation which captures both local density of features and statistics of space-time ordered features. Using two benchmark datasets for human action recognition, we demonstrate that our representation enhances the discriminative power of features and improves action recognition performance, achieving 96.16% recognition rate on popular KTH action dataset and 93.33% on challenging ADL dataset.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
The bag-of-words approach with local spatio-temporal features have become a popular video representation for action recognition. Recent methods have typically focused on capturing global and local statistics of features. However, existing approaches ignore relations between the features, particularly space-time arrangement of features, and thus may not be discriminative enough. Therefore, we propose a novel figure-centric representation which captures both local density of features and statistics of space-time ordered features. Using two benchmark datasets for human action recognition, we demonstrate that our representation enhances the discriminative power of features and improves action recognition performance, achieving 96.16% recognition rate on popular KTH action dataset and 93.33% on challenging ADL dataset.