Three extended horizon adaptive nonlinear predictive control schemes based on the parametric Volterra model

R. Haber, R. Bars, O. Lengyel
{"title":"Three extended horizon adaptive nonlinear predictive control schemes based on the parametric Volterra model","authors":"R. Haber, R. Bars, O. Lengyel","doi":"10.23919/ECC.1999.7099575","DOIUrl":null,"url":null,"abstract":"Extended horizon one-step-ahead predictive control algorithm is given for the parametric Volterra model (which includes also the generalized Hammerstein model). A quadratic cost function is minimized which considers the quadratic deviation of the reference signal and the output signal in a future point beyond the dead time and also punishes big control signal increments. For prediction of the output signal, a prediction equation is applied which uses information about the input and output signals up to the current time. It is advantageous to use the control increments instead of the control signal in the prediction equation, since the cost function contains the control increment and not the control signal itself. Assuming a functional relation between the subsequent control increments in the control horizon leads to a one-dimension minimization of the control cost function. This sub-optimal solution of the nonlinear predictive control approximates the optimal solution with few computational efforts. Three adaptive schemes are presented and compared: estimation of the parameters of the process model, estimation of the parameters of the prediction equation using the control signal, and estimation of the parameters of the prediction equation using the control increments.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Extended horizon one-step-ahead predictive control algorithm is given for the parametric Volterra model (which includes also the generalized Hammerstein model). A quadratic cost function is minimized which considers the quadratic deviation of the reference signal and the output signal in a future point beyond the dead time and also punishes big control signal increments. For prediction of the output signal, a prediction equation is applied which uses information about the input and output signals up to the current time. It is advantageous to use the control increments instead of the control signal in the prediction equation, since the cost function contains the control increment and not the control signal itself. Assuming a functional relation between the subsequent control increments in the control horizon leads to a one-dimension minimization of the control cost function. This sub-optimal solution of the nonlinear predictive control approximates the optimal solution with few computational efforts. Three adaptive schemes are presented and compared: estimation of the parameters of the process model, estimation of the parameters of the prediction equation using the control signal, and estimation of the parameters of the prediction equation using the control increments.
基于参数Volterra模型的三种扩展视界自适应非线性预测控制方案
给出了参数化Volterra模型(也包括广义Hammerstein模型)的扩展视界一步超前预测控制算法。最小化了二次代价函数,该函数考虑了参考信号和输出信号在死区以外的未来点的二次偏差,并惩罚了大的控制信号增量。对于输出信号的预测,应用了一个预测方程,该方程使用了截至当前时间的输入和输出信号的信息。在预测方程中使用控制增量而不是控制信号是有利的,因为成本函数包含控制增量而不是控制信号本身。假设控制范围内后续控制增量之间的函数关系导致控制成本函数的一维最小化。这种非线性预测控制的次优解近似于最优解,计算量很少。提出并比较了三种自适应方案:过程模型参数估计、控制信号预测方程参数估计和控制增量预测方程参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信