{"title":"On the Strong Novikov Conjecture of Locally Compact Groups for Low Degree Cohomology Classes","authors":"Yoshiyasu Fukumoto","doi":"10.14989/DOCTOR.K20046","DOIUrl":null,"url":null,"abstract":"The main result of this paper is non-vanishing of the image of the index map from the $G$-equivariant $K$-homology of a proper $G$-compact $G$-manifold $X$ to the $K$-theory of the $C^{*}$-algebra of the group $G$. Under the assumption that the Kronecker pairing of a $K$-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group $G$ nor freeness of the action of $G$ on $X$ are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14989/DOCTOR.K20046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The main result of this paper is non-vanishing of the image of the index map from the $G$-equivariant $K$-homology of a proper $G$-compact $G$-manifold $X$ to the $K$-theory of the $C^{*}$-algebra of the group $G$. Under the assumption that the Kronecker pairing of a $K$-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group $G$ nor freeness of the action of $G$ on $X$ are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.