Speech enhancement using both spectral and spectral modulation domains

Julien Bosco, É. Plourde
{"title":"Speech enhancement using both spectral and spectral modulation domains","authors":"Julien Bosco, É. Plourde","doi":"10.1109/CCECE.2017.7946647","DOIUrl":null,"url":null,"abstract":"This paper proposes a speech enhancement approach that uses both the spectral and spectral modulation domains. In this approach, the noisy speech signal is enhanced simultaneously in the spectral domain, using a minimum mean square error (MMSE) short time spectral amplitude estimator, and in the spectral modulation domain, using a MMSE spectral modulation magnitude estimator. The results of both estimators are then weighted and combined together, using a function based on the a posteriori SNR, to produce the desired enhanced signal. Comparative results using both the segmental SNR and PESQ objective measures are presented for both stationary and non-stationary noises. It is observed that the proposed approach suppresses more noise than the compared approaches, but at the usual compromise of introducing speech distortions.","PeriodicalId":238720,"journal":{"name":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2017.7946647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a speech enhancement approach that uses both the spectral and spectral modulation domains. In this approach, the noisy speech signal is enhanced simultaneously in the spectral domain, using a minimum mean square error (MMSE) short time spectral amplitude estimator, and in the spectral modulation domain, using a MMSE spectral modulation magnitude estimator. The results of both estimators are then weighted and combined together, using a function based on the a posteriori SNR, to produce the desired enhanced signal. Comparative results using both the segmental SNR and PESQ objective measures are presented for both stationary and non-stationary noises. It is observed that the proposed approach suppresses more noise than the compared approaches, but at the usual compromise of introducing speech distortions.
语音增强使用频谱和频谱调制域
本文提出了一种同时使用频谱域和频谱调制域的语音增强方法。该方法在频谱域采用最小均方误差(MMSE)短时频谱幅度估计器,在频谱调制域采用MMSE频谱调制幅度估计器,同时对含噪语音信号进行增强。然后,使用基于后验信噪比的函数对两个估计器的结果进行加权并组合在一起,以产生所需的增强信号。在平稳噪声和非平稳噪声的情况下,给出了分段信噪比和PESQ客观测量的比较结果。我们观察到,所提出的方法比所比较的方法抑制了更多的噪声,但通常是以引入语音失真为代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信