{"title":"A fast and scalable crowd sensing based trajectory tracking system","authors":"R. Niyogi, Tarun Kulshrestha, Dhaval Patel","doi":"10.1109/IC3.2017.8284303","DOIUrl":null,"url":null,"abstract":"Crowd Sensing collects users' local knowledge such as local information, ambient context, and traffic conditions, etc., using their sensor-enabled devices. The collected information is further aggregated and transferred to the cloud for detailed analysis, such as places / friends recommendation, human behavior, criminal activities, etc. These tracking and monitoring systems must be scalable, fast, and easy to deploy to meet the requirements of a real-time system. In this paper, we propose a fast and scalable crowdsensing based trajectory tracking system which can track any person having the smartphone and can provide a complete analysis of her visited locations in a given time span. We use the Redis in-memory database and XMPP at the sensing units for fast data retrieval and exchange. When a person moves to a new location, WebSocket server updates that person's new location automatically among all sensing units to make the system analysis in real-time. We develop and deploy a real prototype testbed in IIT Roorkee campus and evaluate it extensively to demonstrate the efficiency and scalability of our proposed system.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Crowd Sensing collects users' local knowledge such as local information, ambient context, and traffic conditions, etc., using their sensor-enabled devices. The collected information is further aggregated and transferred to the cloud for detailed analysis, such as places / friends recommendation, human behavior, criminal activities, etc. These tracking and monitoring systems must be scalable, fast, and easy to deploy to meet the requirements of a real-time system. In this paper, we propose a fast and scalable crowdsensing based trajectory tracking system which can track any person having the smartphone and can provide a complete analysis of her visited locations in a given time span. We use the Redis in-memory database and XMPP at the sensing units for fast data retrieval and exchange. When a person moves to a new location, WebSocket server updates that person's new location automatically among all sensing units to make the system analysis in real-time. We develop and deploy a real prototype testbed in IIT Roorkee campus and evaluate it extensively to demonstrate the efficiency and scalability of our proposed system.