{"title":"Extracting meronyms for a biology knowledge base using distant supervision","authors":"Xiao Ling, Peter Clark, Daniel S. Weld","doi":"10.1145/2509558.2509560","DOIUrl":null,"url":null,"abstract":"Knowledge of objects and their parts, meronym relations, are at the heart of many question-answering systems, but manually encoding these facts is impractical. Past researchers have tried hand-written patterns, supervised learning, and bootstrapped methods, but achieving both high precision and recall has proven elusive. This paper reports on a thorough exploration of distant supervision to learn a meronym extractor for the domain of college biology. We introduce a novel algorithm, generalizing the ``at least one'' assumption of multi-instance learning to handle the case where a fixed (but unknown) percentage of bag members are positive examples. Detailed experiments compare strategies for mention detection, negative example generation, leveraging out-of-domain meronyms, and evaluate the benefit of our multi-instance percentage model.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Knowledge of objects and their parts, meronym relations, are at the heart of many question-answering systems, but manually encoding these facts is impractical. Past researchers have tried hand-written patterns, supervised learning, and bootstrapped methods, but achieving both high precision and recall has proven elusive. This paper reports on a thorough exploration of distant supervision to learn a meronym extractor for the domain of college biology. We introduce a novel algorithm, generalizing the ``at least one'' assumption of multi-instance learning to handle the case where a fixed (but unknown) percentage of bag members are positive examples. Detailed experiments compare strategies for mention detection, negative example generation, leveraging out-of-domain meronyms, and evaluate the benefit of our multi-instance percentage model.