V. Franzi, C. Robert, A. Shoeibi, R. Galimberti, E. Mahbou, B. Zupinov, B. Lambert, F. Bouasla, S. Hamdidouche, M. Kallel
{"title":"Towards a Continuous Near-Real Time Reservoir Fluid Characterization by the Implementation of Advanced Mud Logging Technology","authors":"V. Franzi, C. Robert, A. Shoeibi, R. Galimberti, E. Mahbou, B. Zupinov, B. Lambert, F. Bouasla, S. Hamdidouche, M. Kallel","doi":"10.3997/2214-4609.201903113","DOIUrl":null,"url":null,"abstract":"Summary The giant Al Shaheen oil field, located within the Qatar Arch, exhibits variation in reservoir fluid properties, for example the oil API gravity ranges from 15° to 35°. The cause of the variability in oil density is believed to be due to multiple charges events ( E.Hoch et al, 2010 ), and the subtle bacterial alteration ( L.M.Wenger et al, 2002 ). Nowadays the field development is challenged to lower quality reservoirs units and in such condition a continuous information of hydrocarbon fluid quality is required. An example of application in a horizontal well drilled in the Mauddud Formation proves that the monitoring in near real-time of a series of molecular parameters enables the observations of oil quality variations along the well bore. In the future, the information supplied by the advanced mudlogging could evolve in a more detailed API gravity model, applicable to Al Shaheen field, provided by a sufficient number of downhole fluid samples. In any case the methodology, also thanks to its synergy and complementarity with LWD, offers a unique data set for geological interpretation and can give a fundamental contribution to the improvement of fluid sampling program and, ultimately, to a reduction of the costs for downhole sampling.","PeriodicalId":237705,"journal":{"name":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201903113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary The giant Al Shaheen oil field, located within the Qatar Arch, exhibits variation in reservoir fluid properties, for example the oil API gravity ranges from 15° to 35°. The cause of the variability in oil density is believed to be due to multiple charges events ( E.Hoch et al, 2010 ), and the subtle bacterial alteration ( L.M.Wenger et al, 2002 ). Nowadays the field development is challenged to lower quality reservoirs units and in such condition a continuous information of hydrocarbon fluid quality is required. An example of application in a horizontal well drilled in the Mauddud Formation proves that the monitoring in near real-time of a series of molecular parameters enables the observations of oil quality variations along the well bore. In the future, the information supplied by the advanced mudlogging could evolve in a more detailed API gravity model, applicable to Al Shaheen field, provided by a sufficient number of downhole fluid samples. In any case the methodology, also thanks to its synergy and complementarity with LWD, offers a unique data set for geological interpretation and can give a fundamental contribution to the improvement of fluid sampling program and, ultimately, to a reduction of the costs for downhole sampling.
Al Shaheen大油田位于卡塔尔拱门内,其油藏流体性质变化很大,例如原油API度在15°到35°之间。油层密度变化的原因被认为是多重电荷事件(E.Hoch et al ., 2010)和微妙的细菌改变(L.M.Wenger et al ., 2002)。目前油田开发面临着低质量储层单元的挑战,在这种情况下,需要连续的油气流体质量信息。在Mauddud地层水平井中的应用实例证明,通过对一系列分子参数的近实时监测,可以观察到沿井筒的油质变化。在未来,先进的泥浆测井提供的信息可以发展为更详细的API重力模型,适用于Al Shaheen油田,由足够数量的井下流体样本提供。在任何情况下,由于该方法与随钻测井的协同作用和互补性,为地质解释提供了独特的数据集,可以为改进流体采样程序做出根本性贡献,并最终降低井下采样成本。