3D Shape Estimation from RGB Data Using 2.5D Features and Deep Learning

Hamid Ashfaq, Ahmad Jalal
{"title":"3D Shape Estimation from RGB Data Using 2.5D Features and Deep Learning","authors":"Hamid Ashfaq, Ahmad Jalal","doi":"10.1109/ICACS55311.2023.10089663","DOIUrl":null,"url":null,"abstract":"Creation of 3D models from a single RGB image is challenging problem in image processing these days, as the technology is in its early development stage. However, the demands for 3D technology and 3D reconstruction have been rapidly increasing nowadays. The traditional approach of computer graphics is to create a geometric model in 3D and try to reproduce it onto a 2D image with rendering. The major aim of the study is to create 3D models from 2D RGB image using machine learning techniques to be less computationally complex as compared to any deep learning algorithm. The proposed model has been based on three different modules such as: 2.5D features extraction, mesh generation, and 3D boundary detection. The ShapeNet dataset has been used for comparison. The testing results has shown an accuracy of 90.77 % in the plane class, 85.72% in the chair class, and 72.14% in the automobile class. The proposed model could be applicable to problems where reconstruction of 3D models is required such as: variations in geometric scale, mix of textured, uniformly colored, and reflective surfaces.","PeriodicalId":357522,"journal":{"name":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS55311.2023.10089663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Creation of 3D models from a single RGB image is challenging problem in image processing these days, as the technology is in its early development stage. However, the demands for 3D technology and 3D reconstruction have been rapidly increasing nowadays. The traditional approach of computer graphics is to create a geometric model in 3D and try to reproduce it onto a 2D image with rendering. The major aim of the study is to create 3D models from 2D RGB image using machine learning techniques to be less computationally complex as compared to any deep learning algorithm. The proposed model has been based on three different modules such as: 2.5D features extraction, mesh generation, and 3D boundary detection. The ShapeNet dataset has been used for comparison. The testing results has shown an accuracy of 90.77 % in the plane class, 85.72% in the chair class, and 72.14% in the automobile class. The proposed model could be applicable to problems where reconstruction of 3D models is required such as: variations in geometric scale, mix of textured, uniformly colored, and reflective surfaces.
基于2.5D特征和深度学习的RGB数据三维形状估计
目前,从单张RGB图像创建3D模型在图像处理中是一个具有挑战性的问题,因为该技术还处于早期发展阶段。然而,目前对三维技术和三维重建的需求正在迅速增加。计算机图形学的传统方法是在3D中创建一个几何模型,并试图通过渲染将其复制到2D图像上。该研究的主要目的是使用机器学习技术从2D RGB图像创建3D模型,与任何深度学习算法相比,该技术的计算复杂性更低。该模型基于三个不同的模块:2.5D特征提取、网格生成和3D边界检测。ShapeNet数据集用于比较。测试结果表明,飞机类、座椅类和汽车类的准确率分别为90.77%、85.72%和72.14%。提出的模型可以适用于需要重建三维模型的问题,如几何比例的变化,纹理,均匀颜色和反射表面的混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信