Speech pattern generation and recognition using a personal computer

K. Gopalan, B. burridge
{"title":"Speech pattern generation and recognition using a personal computer","authors":"K. Gopalan, B. burridge","doi":"10.1109/SSST.1988.17058","DOIUrl":null,"url":null,"abstract":"A personal-computer-based system to generate and recognize speech patterns of discrete utterances from a limited vocabulary is described. The system implements a time-domain approach based on successive amplitude samples to develop a nonparametric characterization of utterances. Unknown words are recognized using a multiprototype minimum-distance classifier. The method is computationally simple and fast, and yields better word-recognition results than previously reported.<<ETX>>","PeriodicalId":345412,"journal":{"name":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1988.17058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A personal-computer-based system to generate and recognize speech patterns of discrete utterances from a limited vocabulary is described. The system implements a time-domain approach based on successive amplitude samples to develop a nonparametric characterization of utterances. Unknown words are recognized using a multiprototype minimum-distance classifier. The method is computationally simple and fast, and yields better word-recognition results than previously reported.<>
使用个人计算机的语音模式生成和识别
描述了一种基于个人计算机的系统,用于从有限的词汇中生成和识别离散话语的语音模式。该系统实现了基于连续振幅样本的时域方法来开发话语的非参数表征。使用多原型最小距离分类器识别未知词。该方法计算简单,速度快,比以往报道的单词识别结果更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信