Computer Aided Diagnosis of Cardiac Arrhythmias

Marwa M. A. Hadhoud, M. Eladawy, A. Farag
{"title":"Computer Aided Diagnosis of Cardiac Arrhythmias","authors":"Marwa M. A. Hadhoud, M. Eladawy, A. Farag","doi":"10.1109/ICCES.2006.320458","DOIUrl":null,"url":null,"abstract":"The early detection of arrhythmia is very important for the cardiac patients. This is done by analyzing the electrocardiogram (ECG) signals and extracting some features from them. These features can be used in the classification of different types of arrhythmias. In this paper, we present three different algorithms of features extraction: Fourier transform (FFT), autoregressive modeling (AR), and principal component analysis (PCA). The used classifier is artificial neural networks (ANN). We observed that the system that depends on the PCA features give the highest accuracy. The proposed techniques deal with the whole 3 second intervals of the training and testing data. We reached the accuracy of 92.7083% compared to 84.4% for the reference that work on a similar data","PeriodicalId":261853,"journal":{"name":"2006 International Conference on Computer Engineering and Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Computer Engineering and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2006.320458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The early detection of arrhythmia is very important for the cardiac patients. This is done by analyzing the electrocardiogram (ECG) signals and extracting some features from them. These features can be used in the classification of different types of arrhythmias. In this paper, we present three different algorithms of features extraction: Fourier transform (FFT), autoregressive modeling (AR), and principal component analysis (PCA). The used classifier is artificial neural networks (ANN). We observed that the system that depends on the PCA features give the highest accuracy. The proposed techniques deal with the whole 3 second intervals of the training and testing data. We reached the accuracy of 92.7083% compared to 84.4% for the reference that work on a similar data
心律失常的计算机辅助诊断
心律失常的早期发现对心脏病患者非常重要。这是通过分析心电图信号并从中提取一些特征来实现的。这些特征可用于不同类型心律失常的分类。在本文中,我们提出了三种不同的特征提取算法:傅里叶变换(FFT),自回归建模(AR)和主成分分析(PCA)。使用的分类器是人工神经网络(ANN)。我们观察到,依赖于PCA特征的系统给出了最高的准确性。所提出的技术处理训练和测试数据的整个3秒间隔。我们达到了92.7083%的准确率,而在类似数据上工作的参考文献的准确率为84.4%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信