Quick Computation of the Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits

T. Hirayama, Rin Suzuki, Katsuhisa Yamanaka, Y. Nishitani
{"title":"Quick Computation of the Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits","authors":"T. Hirayama, Rin Suzuki, Katsuhisa Yamanaka, Y. Nishitani","doi":"10.1109/ISMVL57333.2023.00038","DOIUrl":null,"url":null,"abstract":"We present a time-efficient lower bound $\\tilde \\sigma $ on the number of gates in Toffoli-based reversible circuits that represent a given reversible logic function. For the characteristic vector s of a reversible logic function, the value of $\\tilde \\sigma ({\\mathbf{s}})$ is almost the same as σ-lb (s), which is known as a relatively-efficient lower bound in terms of the evaluation time and the tightness. By slightly sacrificing the tightness of the lower bound, $\\tilde \\sigma $ achieves fast computation. We prove that $\\tilde \\sigma $ is a lower bound on σ-lb. Next, we show $\\tilde \\sigma $ can be calculated faster than σ-lb. The time complexity of $\\tilde \\sigma ({\\mathbf{s}})$ is О(n2), where n is the dimension of s. Experimental results to compare $\\tilde \\sigma $ and σ-lb are also given. The results demonstrate that the values of $\\tilde \\sigma ({\\mathbf{s}})$ are equal to those of σ-lb (s) for most reversible functions and that the computation time of $\\tilde \\sigma ({\\mathbf{s}})$ is much shorter than that of σ-lb(s).","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a time-efficient lower bound $\tilde \sigma $ on the number of gates in Toffoli-based reversible circuits that represent a given reversible logic function. For the characteristic vector s of a reversible logic function, the value of $\tilde \sigma ({\mathbf{s}})$ is almost the same as σ-lb (s), which is known as a relatively-efficient lower bound in terms of the evaluation time and the tightness. By slightly sacrificing the tightness of the lower bound, $\tilde \sigma $ achieves fast computation. We prove that $\tilde \sigma $ is a lower bound on σ-lb. Next, we show $\tilde \sigma $ can be calculated faster than σ-lb. The time complexity of $\tilde \sigma ({\mathbf{s}})$ is О(n2), where n is the dimension of s. Experimental results to compare $\tilde \sigma $ and σ-lb are also given. The results demonstrate that the values of $\tilde \sigma ({\mathbf{s}})$ are equal to those of σ-lb (s) for most reversible functions and that the computation time of $\tilde \sigma ({\mathbf{s}})$ is much shorter than that of σ-lb(s).
基于toffoli的可逆逻辑电路门数下界的快速计算
我们提出了toffoli可逆电路中表示给定可逆逻辑函数的门数的时间效率下界$\tilde \sigma $。对于可逆逻辑函数的特征向量s, $\tilde \sigma ({\mathbf{s}})$的值与σ-lb (s)几乎相同,在评估时间和紧密性方面被称为相对有效的下界。通过稍微牺牲下界的紧密性,$\tilde \sigma $实现了快速计算。证明了$\tilde \sigma $是σ-lb的下界。接下来,我们证明$\tilde \sigma $可以比σ-lb更快地计算。$\tilde \sigma ({\mathbf{s}})$的时间复杂度为О(n2),其中n为s的维数。并给出了$\tilde \sigma $与σ-lb的比较实验结果。结果表明,对于大多数可逆函数,$\tilde \sigma ({\mathbf{s}})$的取值与σ-lb(s)的取值相等,且$\tilde \sigma ({\mathbf{s}})$的计算时间比σ-lb(s)的计算时间短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信