EyeKnowYou: A DIY Toolkit to Support Monitoring Cognitive Load and Actual Screen Time using a Head-Mounted Webcam

Tharindu Kaluarachchi, Shardul Sapkota, Jules Taradel, Aristée Thevenon, Denys J. C. Matthies, Suranga Nanayakkara
{"title":"EyeKnowYou: A DIY Toolkit to Support Monitoring Cognitive Load and Actual Screen Time using a Head-Mounted Webcam","authors":"Tharindu Kaluarachchi, Shardul Sapkota, Jules Taradel, Aristée Thevenon, Denys J. C. Matthies, Suranga Nanayakkara","doi":"10.1145/3447527.3474850","DOIUrl":null,"url":null,"abstract":"Studies show that frequent screen exposure and increased cognitive load can cause mental-health issues. Although expensive systems capable of detecting cognitive load and timers counting on-screen time exist, literature has yet to demonstrate measuring both factors across devices. To address this, we propose an inexpensive DIY-approach using a single head-mounted webcam capturing the user’s eye. By classifying camera feed using a 3D Convolutional Neural Network, we can determine increased cognitive load and actual screen time. This works because the camera feed contains corneal surface reflection, as well as physiological parameters that contain information on cognitive load. Even with a small data set, we were able to develop generalised models showing 70% accuracy. To increase the models’ accuracy, we seek the community’s help by contributing more raw data. Therefore, we provide an opensource software and a DIY-guide to make our toolkit accessible to human factors researchers without an engineering background.","PeriodicalId":281566,"journal":{"name":"Adjunct Publication of the 23rd International Conference on Mobile Human-Computer Interaction","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 23rd International Conference on Mobile Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447527.3474850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Studies show that frequent screen exposure and increased cognitive load can cause mental-health issues. Although expensive systems capable of detecting cognitive load and timers counting on-screen time exist, literature has yet to demonstrate measuring both factors across devices. To address this, we propose an inexpensive DIY-approach using a single head-mounted webcam capturing the user’s eye. By classifying camera feed using a 3D Convolutional Neural Network, we can determine increased cognitive load and actual screen time. This works because the camera feed contains corneal surface reflection, as well as physiological parameters that contain information on cognitive load. Even with a small data set, we were able to develop generalised models showing 70% accuracy. To increase the models’ accuracy, we seek the community’s help by contributing more raw data. Therefore, we provide an opensource software and a DIY-guide to make our toolkit accessible to human factors researchers without an engineering background.
EyeKnowYou:一个DIY工具包,支持使用头戴式网络摄像头监测认知负荷和实际屏幕时间
研究表明,频繁的屏幕暴露和认知负荷的增加会导致心理健康问题。虽然有昂贵的系统能够检测认知负荷和计时器计算屏幕上的时间,但文献尚未证明在设备上测量这两个因素。为了解决这个问题,我们提出了一种廉价的diy方法,使用单个头戴式网络摄像头捕捉用户的眼睛。通过使用3D卷积神经网络对摄像机馈电进行分类,我们可以确定增加的认知负荷和实际屏幕时间。这是有效的,因为摄像头的馈送包含角膜表面反射,以及包含认知负荷信息的生理参数。即使只有很小的数据集,我们也能够开发出具有70%准确率的广义模型。为了提高模型的准确性,我们通过提供更多的原始数据来寻求社区的帮助。因此,我们提供了一个开源软件和一个diy指南,使没有工程背景的人为因素研究人员可以使用我们的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信