Facial Expression Classification Using Vanilla Convolution Neural Network

Lakshmi Sarvani Videla, Priyesh Kumar
{"title":"Facial Expression Classification Using Vanilla Convolution Neural Network","authors":"Lakshmi Sarvani Videla, Priyesh Kumar","doi":"10.1109/ICSSS49621.2020.9202053","DOIUrl":null,"url":null,"abstract":"Automatic Facial Expression Recognition (FER) is an active research area in artificial intelligence and image processing. One of the main challenges in FER is the automatic feature extraction. In this paper, the proposed 10 –layer Convolutional Neural Network (CNN) architecture can automatically detect important features without human supervision. This research uses Extended Cohn-Kanade (CK+) dataset and Japanese Female Facial Expression (JAFFE) dataset for facial expression recognition. The proposed architecture achieved an accuracy of 99.3% and 78.1% in classifying facial expressions in CK+ and JAFFE datasets.","PeriodicalId":286407,"journal":{"name":"2020 7th International Conference on Smart Structures and Systems (ICSSS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Smart Structures and Systems (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSS49621.2020.9202053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic Facial Expression Recognition (FER) is an active research area in artificial intelligence and image processing. One of the main challenges in FER is the automatic feature extraction. In this paper, the proposed 10 –layer Convolutional Neural Network (CNN) architecture can automatically detect important features without human supervision. This research uses Extended Cohn-Kanade (CK+) dataset and Japanese Female Facial Expression (JAFFE) dataset for facial expression recognition. The proposed architecture achieved an accuracy of 99.3% and 78.1% in classifying facial expressions in CK+ and JAFFE datasets.
基于Vanilla卷积神经网络的面部表情分类
自动面部表情识别(FER)是人工智能和图像处理领域的一个活跃研究领域。自动特征提取是人工神经网络的主要挑战之一。本文提出的10层卷积神经网络(CNN)架构可以在没有人工监督的情况下自动检测重要特征。本研究使用扩展Cohn-Kanade (CK+)数据集和日本女性面部表情(JAFFE)数据集进行面部表情识别。该算法在CK+和JAFFE数据集上的面部表情分类准确率分别为99.3%和78.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信