Real Time Human Action Recognition in a Long Video Sequence

Ping Guo, Z. Miao, Yuan Shen, Heng-Da Cheng
{"title":"Real Time Human Action Recognition in a Long Video Sequence","authors":"Ping Guo, Z. Miao, Yuan Shen, Heng-Da Cheng","doi":"10.1109/AVSS.2010.44","DOIUrl":null,"url":null,"abstract":"In recent years, most action recognition researches focuson isolated action analysis for short videos, but ignore theissue of continuous action recognition for a long videosequence in real time. This paper proposes a novelapproach for human action recognition in a video sequencewith whatever length, which, unlike previous works,requires no annotations and no pre-temporal-segmentations.Based on the bag of words representation and theprobabilistic Latent Semantic Analysis (pLSA) model, therecognition process goes frame by frame and the decisionupdates from time to time. Experimental results show thatthis approach is effective to recognize both isolated actionsand continuous actions no matter how long a videosequence is. This is very useful for real time applicationslike video surveillance. Besides, we also test our approachfor real time temporal video segmentation and real time keyframe extraction.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In recent years, most action recognition researches focuson isolated action analysis for short videos, but ignore theissue of continuous action recognition for a long videosequence in real time. This paper proposes a novelapproach for human action recognition in a video sequencewith whatever length, which, unlike previous works,requires no annotations and no pre-temporal-segmentations.Based on the bag of words representation and theprobabilistic Latent Semantic Analysis (pLSA) model, therecognition process goes frame by frame and the decisionupdates from time to time. Experimental results show thatthis approach is effective to recognize both isolated actionsand continuous actions no matter how long a videosequence is. This is very useful for real time applicationslike video surveillance. Besides, we also test our approachfor real time temporal video segmentation and real time keyframe extraction.
长视频序列中的实时人体动作识别
近年来,大多数动作识别研究都集中在对短视频的孤立动作分析上,而忽略了对长视频序列的实时连续动作识别问题。本文提出了一种在任意长度的视频序列中识别人类动作的新方法,与以往的工作不同,该方法不需要注释和预时间分割。基于词包表示和概率潜在语义分析(pLSA)模型,识别过程逐帧进行,决策不断更新。实验结果表明,无论视频序列有多长,该方法都能有效地识别孤立动作和连续动作。这对于视频监控等实时应用非常有用。此外,我们还测试了我们的方法用于实时视频分割和实时关键帧提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信