3D shape registration using regularized medial scaffolds

Ming-Ching Chang, F. Leymarie, B. Kimia
{"title":"3D shape registration using regularized medial scaffolds","authors":"Ming-Ching Chang, F. Leymarie, B. Kimia","doi":"10.1109/TDPVT.2004.1335423","DOIUrl":null,"url":null,"abstract":"This work proposes a method for global registration based on matching 3D medial structures of unorganized point clouds or triangulated meshes. Most practical known methods are based on the iterative closest point (ICP) algorithm, which requires an initial alignment close to the globally optimal solution to ensure convergence to a valid solution. Furthermore, it can also fail when there are points in one dataset with no corresponding matches in the other dataset. The proposed method automatically finds an initial alignment close to the global optimal by using the medial structure of the datasets. For this purpose, we first compute the medial scaffold of a 3D dataset: a 3D graph made of special shock curves linking special shock nodes. This medial scaffold is then regularized exploiting the known transitions of the 3D medial axis under deformation or perturbation of the input data. The resulting simplified medial scaffolds are then registered using a modified graduated assignment graph matching algorithm. The proposed method shows robustness to noise, shape deformations, and varying surface sampling densities.","PeriodicalId":191172,"journal":{"name":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDPVT.2004.1335423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This work proposes a method for global registration based on matching 3D medial structures of unorganized point clouds or triangulated meshes. Most practical known methods are based on the iterative closest point (ICP) algorithm, which requires an initial alignment close to the globally optimal solution to ensure convergence to a valid solution. Furthermore, it can also fail when there are points in one dataset with no corresponding matches in the other dataset. The proposed method automatically finds an initial alignment close to the global optimal by using the medial structure of the datasets. For this purpose, we first compute the medial scaffold of a 3D dataset: a 3D graph made of special shock curves linking special shock nodes. This medial scaffold is then regularized exploiting the known transitions of the 3D medial axis under deformation or perturbation of the input data. The resulting simplified medial scaffolds are then registered using a modified graduated assignment graph matching algorithm. The proposed method shows robustness to noise, shape deformations, and varying surface sampling densities.
使用规范化的中间支架进行3D形状注册
本文提出了一种基于匹配无组织点云或三角网格的三维介质结构的全局配准方法。大多数实用的已知方法都是基于迭代最近点(ICP)算法,该算法要求初始对齐接近全局最优解,以确保收敛到有效解。此外,当一个数据集中的点在另一个数据集中没有相应的匹配时,它也可能失败。该方法利用数据集的中间结构,自动找到一个接近全局最优的初始对齐。为此,我们首先计算3D数据集的中间支架:由连接特殊冲击节点的特殊冲击曲线组成的3D图形。然后,利用已知的3D中轴在输入数据的变形或扰动下的过渡,对该中间支架进行正则化。然后使用改进的分级分配图匹配算法对得到的简化的内侧支架进行配准。该方法对噪声、形状变形和不同表面采样密度具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信