Wavelet transform image coding using vector quantization

M. Barlaud, P. Mathieu, M. Antonini
{"title":"Wavelet transform image coding using vector quantization","authors":"M. Barlaud, P. Mathieu, M. Antonini","doi":"10.1109/MDSP.1989.97056","DOIUrl":null,"url":null,"abstract":"Summary form only given. A novel scheme for image compression is proposed. Wavelet transform is used to obtain a set of orthonormal subclasses of images. Wavelets are functions that allow the construction of an orthonormal basis of L/sup 2/(R). The wavelet functions are well localized both in the space and frequency domains. The original image is decomposed on this orthonormal basis with a pyramidal algorithm architecture using quadrature mirror filters. This classification approach separates images (vectors) into perceptually distinct classes and thus matches the visual system model. The wavelet coefficients of each class are then vector quantized. The algorithm is based on a clustering approach and on the minimization of a distortion measure such as mean-squared error (MSE). A global codebook design unfortunately results in edge smoothing.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Summary form only given. A novel scheme for image compression is proposed. Wavelet transform is used to obtain a set of orthonormal subclasses of images. Wavelets are functions that allow the construction of an orthonormal basis of L/sup 2/(R). The wavelet functions are well localized both in the space and frequency domains. The original image is decomposed on this orthonormal basis with a pyramidal algorithm architecture using quadrature mirror filters. This classification approach separates images (vectors) into perceptually distinct classes and thus matches the visual system model. The wavelet coefficients of each class are then vector quantized. The algorithm is based on a clustering approach and on the minimization of a distortion measure such as mean-squared error (MSE). A global codebook design unfortunately results in edge smoothing.<>
小波变换图像的矢量量化编码
只提供摘要形式。提出了一种新的图像压缩方案。利用小波变换得到图像的一组正交子类。小波是允许构造L/sup 2/(R)的标准正交基的函数。小波函数在空间域和频域都有很好的局部化。原始图像在此标准正交基础上进行分解,采用正交镜像滤波器的金字塔算法架构。这种分类方法将图像(向量)分成感知上不同的类,从而匹配视觉系统模型。然后对每一类的小波系数进行矢量量化。该算法基于聚类方法和最小的失真度量,如均方误差(MSE)。不幸的是,全局码本设计会导致边缘平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信