Term Structure Dynamics with Macro Factors Using High Frequency Data

Hwagyun Kim, Hail Park
{"title":"Term Structure Dynamics with Macro Factors Using High Frequency Data","authors":"Hwagyun Kim, Hail Park","doi":"10.2139/ssrn.2234162","DOIUrl":null,"url":null,"abstract":"This paper empirically studies the role of macro-factors in explaining and predicting daily bond yields. In general, macro-finance models use low-frequency data to match with macroeconomic variables available only at low frequencies. To deal with this, we construct and estimate a tractable no-arbitrage affine model with both conventional latent factors and macro-factors by imposing cross-equation restrictions on the daily yields of bonds with different maturities, credit risks, and inflation indexation. The estimation results using both the US and the UK data show that the estimated macro-factors significantly predict actual inflation and the output gap. In addition, our daily macro-term structure model forecasts better than no-arbitrage models with only latent factors as well as other statistical models.","PeriodicalId":443911,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2234162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper empirically studies the role of macro-factors in explaining and predicting daily bond yields. In general, macro-finance models use low-frequency data to match with macroeconomic variables available only at low frequencies. To deal with this, we construct and estimate a tractable no-arbitrage affine model with both conventional latent factors and macro-factors by imposing cross-equation restrictions on the daily yields of bonds with different maturities, credit risks, and inflation indexation. The estimation results using both the US and the UK data show that the estimated macro-factors significantly predict actual inflation and the output gap. In addition, our daily macro-term structure model forecasts better than no-arbitrage models with only latent factors as well as other statistical models.
基于高频数据的宏观因素的期限结构动力学
本文对宏观因素在债券日收益率解释和预测中的作用进行了实证研究。一般来说,宏观金融模型使用低频数据来匹配只在低频时可用的宏观经济变量。为了解决这一问题,我们通过对不同期限债券的日收益率、信用风险和通货膨胀指数施加交叉方程限制,构建并估计了一个可处理的无套利仿射模型,同时考虑了传统潜在因素和宏观因素。使用美国和英国数据的估计结果表明,估计的宏观因素显著预测实际通胀和产出缺口。此外,我们的日常宏观期限结构模型比只有潜在因素的无套利模型和其他统计模型的预测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信