Analysis on Innovation Efficiency of China Meteorological Science and Technology and Its Influencing Factors

S. Danna, Li Yan
{"title":"Analysis on Innovation Efficiency of China Meteorological Science and Technology and Its Influencing Factors","authors":"S. Danna, Li Yan","doi":"10.11648/J.AJMSE.20190402.13","DOIUrl":null,"url":null,"abstract":"Based on the meteorological statistics from 2014 to 2017, this paper adopts the DEA-Tobit Two Step method to estimate the innovation efficiency of China meteorological science and technology and then analyses its influencing factors. It is found that during 2014-2017, Beijing has been at the forefront in innovation efficiency of meteorological S&T, followed by Tianjin. Some other provinces and cities have a decline in technology efficiency. Therefore, pure technology inefficiency still remains a major problem faced by most provinces and cities. Meanwhile, it also reveals that innovation efficiency of meteorological S&T is significantly and positively impacted by scientific research input and academic structure, but without any significant linear interrelationship with economic development and government influence.","PeriodicalId":438321,"journal":{"name":"American Journal of Management Science and Engineering","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Management Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMSE.20190402.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based on the meteorological statistics from 2014 to 2017, this paper adopts the DEA-Tobit Two Step method to estimate the innovation efficiency of China meteorological science and technology and then analyses its influencing factors. It is found that during 2014-2017, Beijing has been at the forefront in innovation efficiency of meteorological S&T, followed by Tianjin. Some other provinces and cities have a decline in technology efficiency. Therefore, pure technology inefficiency still remains a major problem faced by most provinces and cities. Meanwhile, it also reveals that innovation efficiency of meteorological S&T is significantly and positively impacted by scientific research input and academic structure, but without any significant linear interrelationship with economic development and government influence.
中国气象科技创新效率及其影响因素分析
基于2014 - 2017年气象统计数据,采用DEA-Tobit两步法估算中国气象科技创新效率,并分析其影响因素。研究发现,2014-2017年,北京市在气象科技创新效率方面处于领先地位,天津紧随其后。其他一些省市的技术效率有所下降。因此,纯技术效率低下仍然是大多数省市面临的主要问题。气象科技创新效率受到科研投入和学术结构的显著正向影响,而与经济发展和政府影响不存在显著的线性相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信