Non Hamiltonian Chaos from Nambu Dynamics of Surfaces

M. Axenides
{"title":"Non Hamiltonian Chaos from Nambu Dynamics of Surfaces","authors":"M. Axenides","doi":"10.1142/9789814350341_0012","DOIUrl":null,"url":null,"abstract":"We discuss recent work with E.Floratos (JHEP 1004:036,2010) on Nambu Dynamics of Intersecting Surfaces underlying Dissipative Chaos in $R^{3}$. We present our argument for the well studied Lorenz and R\\\"{o}ssler strange attractors. We implement a flow decomposition to their equations of motion. Their volume preserving part preserves in time a family of two intersecting surfaces, the so called {\\em Nambu Hamiltonians}. For dynamical systems with linear dissipative sector such as the Lorenz system, they are specified in terms of Intersecting Quadratic Surfaces. For the case of the R\\\"{o}ssler system, with nonlinear dissipative part, they are given in terms of a Helicoid intersected by a Cylinder. In each case they foliate the entire phase space and get deformed by Dissipation, the irrotational component to their flow. It is given by the gradient of a surface in $R^{3}$ specified in terms of a scalar function. All three intersecting surfaces reproduce completely the dynamics of each strange attractor.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814350341_0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We discuss recent work with E.Floratos (JHEP 1004:036,2010) on Nambu Dynamics of Intersecting Surfaces underlying Dissipative Chaos in $R^{3}$. We present our argument for the well studied Lorenz and R\"{o}ssler strange attractors. We implement a flow decomposition to their equations of motion. Their volume preserving part preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. For dynamical systems with linear dissipative sector such as the Lorenz system, they are specified in terms of Intersecting Quadratic Surfaces. For the case of the R\"{o}ssler system, with nonlinear dissipative part, they are given in terms of a Helicoid intersected by a Cylinder. In each case they foliate the entire phase space and get deformed by Dissipation, the irrotational component to their flow. It is given by the gradient of a surface in $R^{3}$ specified in terms of a scalar function. All three intersecting surfaces reproduce completely the dynamics of each strange attractor.
曲面的Nambu动力学中的非哈密顿混沌
我们讨论了最近与E.Floratos (JHEP 1004:036,2010)关于R^{3}$中耗散混沌下相交曲面的Nambu动力学。我们提出我们的论点,充分研究洛伦兹和R\ {o}ssler奇异吸引子。我们对它们的运动方程进行了流动分解。它们的体积保持部分在时间上保留了两个相交表面的族,即所谓的{em南布哈密顿量}。对于具有线性耗散扇区的动力系统,如洛伦兹系统,它们是用二次曲面相交来表示的。对于具有非线性耗散部分的R\ {0} sler系统,它们是用柱面与螺旋面相交的形式给出的。在每种情况下,它们使整个相空间呈叶状,并因耗散而变形,耗散是它们流动的非旋转成分。它是由$R^{3}$中以标量函数表示的曲面的梯度给出的。所有三个相交的表面完全再现了每个奇异吸引子的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信