Real-time crack characterization in conductive tubes through an adaptive partial least squares approach

M. Salucci, Shamim Ahmed, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, A. Massa
{"title":"Real-time crack characterization in conductive tubes through an adaptive partial least squares approach","authors":"M. Salucci, Shamim Ahmed, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, A. Massa","doi":"10.1109/APUSNCURSINRSM.2017.8072053","DOIUrl":null,"url":null,"abstract":"This work deals with the real-time non-destructive testing and evaluation (NDT/NDE) of conductive tubes. An innovative learning-by-examples (LBE) strategy is proposed to address the inversion of eddy current testing (ECT) data. The partial least squares (PLS) features extraction technique is combined with an output space filling (OSF) adaptive sampling strategy in order to collect as much as possible information about the input/output (I/O) relationship to model, mitigating the negative effects of the curse of dimensionality. Robust and accurate predictions are then performed by means of support vector regression (SVR). A preliminary numerical validation is shown to prove the effectiveness of the approach.","PeriodicalId":264754,"journal":{"name":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUSNCURSINRSM.2017.8072053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with the real-time non-destructive testing and evaluation (NDT/NDE) of conductive tubes. An innovative learning-by-examples (LBE) strategy is proposed to address the inversion of eddy current testing (ECT) data. The partial least squares (PLS) features extraction technique is combined with an output space filling (OSF) adaptive sampling strategy in order to collect as much as possible information about the input/output (I/O) relationship to model, mitigating the negative effects of the curse of dimensionality. Robust and accurate predictions are then performed by means of support vector regression (SVR). A preliminary numerical validation is shown to prove the effectiveness of the approach.
基于自适应偏最小二乘方法的导电管裂纹实时表征
本工作涉及导电管的实时无损检测与评价(NDT/NDE)。针对电涡流测试数据的反演问题,提出了一种创新的实例学习(LBE)方法。将偏最小二乘(PLS)特征提取技术与输出空间填充(OSF)自适应采样策略相结合,尽可能多地收集输入/输出(I/O)与模型的关系信息,减轻了维数的负面影响。然后通过支持向量回归(SVR)进行稳健和准确的预测。初步的数值验证表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信