{"title":"Nanodielectric structure-property relationships and design rules using chemometric methods","authors":"N. Freebody, G. Stevens, H. Herman, A. Vaughan","doi":"10.1109/ICD.2016.7547512","DOIUrl":null,"url":null,"abstract":"With balanced consideration of the polymer matrix chemistry, nanofiller type, loading and surface chemical treatment, the application of multi-variate statistical analysis (MVSA) modeling was carried out to inform structure property relationships in support of material design and optimization. Fourier transform infrared spectra and physical property measurements, including thermal and electrical properties, were performed on a number of unfilled and nanosilica-filled epoxy systems. MVSA models were constructed and the ability of molecular spectroscopy to measure the target properties demonstrated. The models produced a consistent picture of chemical group correlations with electrical properties such as space charge accumulation and electrical breakdown strength, which are consistent with recent molecular dynamics calculations of the effect of group chemistry on charge transport and trapping in polymers. Findings also suggest that it is possible to gain insights into potential interactions between the resin and nanofiller.","PeriodicalId":306397,"journal":{"name":"2016 IEEE International Conference on Dielectrics (ICD)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD.2016.7547512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With balanced consideration of the polymer matrix chemistry, nanofiller type, loading and surface chemical treatment, the application of multi-variate statistical analysis (MVSA) modeling was carried out to inform structure property relationships in support of material design and optimization. Fourier transform infrared spectra and physical property measurements, including thermal and electrical properties, were performed on a number of unfilled and nanosilica-filled epoxy systems. MVSA models were constructed and the ability of molecular spectroscopy to measure the target properties demonstrated. The models produced a consistent picture of chemical group correlations with electrical properties such as space charge accumulation and electrical breakdown strength, which are consistent with recent molecular dynamics calculations of the effect of group chemistry on charge transport and trapping in polymers. Findings also suggest that it is possible to gain insights into potential interactions between the resin and nanofiller.