3D Model-Based UAV Pose Estimation using GPU

N. P. Santos, V. Lobo, A. Bernardino
{"title":"3D Model-Based UAV Pose Estimation using GPU","authors":"N. P. Santos, V. Lobo, A. Bernardino","doi":"10.23919/OCEANS40490.2019.8962704","DOIUrl":null,"url":null,"abstract":"It is presented a monocular RGB vision system to estimate the pose (3D position and orientation) of a fixed-wing Unmanned Aerial Vehicle (UAV) concerning the camera reference frame. Using this estimate, a Ground Control Station (GCS) can control the UAV trajectory during landing on a Fast Patrol Boat (FPB). A ground-based vision system makes it possible to use more sophisticated algorithms since we have more processing power available. The proposed method uses a 3D model-based approach based on a Particle Filter (PF) divided into five stages: (i) frame capture, (ii) target detection, (iii) distortion correction, (iv) appearance-based pose sampler, and (v) pose estimation. In the frame capture stage, we obtain a new observation (a new frame). In the target detection stage, we detect the UAV region on the captured frame using a detector based on a Deep Neural Network (DNN). In the distortion correction stage, we correct the frame radial and tangential distortions to obtain a better estimate. In the appearance-based pose sampler stage, we use a synthetically generated pre-trained database for a rough pose initialization. In the pose estimation stage, we apply an optimization algorithm to be able to obtain a UAV pose estimate in the captured frame with low error. The overall system performance is increased using the Graphics Processing Unit (GPU) for parallel processing. Results show that the GPU computational resources are essential to obtain a real-time pose estimation system.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is presented a monocular RGB vision system to estimate the pose (3D position and orientation) of a fixed-wing Unmanned Aerial Vehicle (UAV) concerning the camera reference frame. Using this estimate, a Ground Control Station (GCS) can control the UAV trajectory during landing on a Fast Patrol Boat (FPB). A ground-based vision system makes it possible to use more sophisticated algorithms since we have more processing power available. The proposed method uses a 3D model-based approach based on a Particle Filter (PF) divided into five stages: (i) frame capture, (ii) target detection, (iii) distortion correction, (iv) appearance-based pose sampler, and (v) pose estimation. In the frame capture stage, we obtain a new observation (a new frame). In the target detection stage, we detect the UAV region on the captured frame using a detector based on a Deep Neural Network (DNN). In the distortion correction stage, we correct the frame radial and tangential distortions to obtain a better estimate. In the appearance-based pose sampler stage, we use a synthetically generated pre-trained database for a rough pose initialization. In the pose estimation stage, we apply an optimization algorithm to be able to obtain a UAV pose estimate in the captured frame with low error. The overall system performance is increased using the Graphics Processing Unit (GPU) for parallel processing. Results show that the GPU computational resources are essential to obtain a real-time pose estimation system.
基于GPU的三维模型无人机姿态估计
提出了一种单目RGB视觉系统来估计固定翼无人机(UAV)在相机参照系下的姿态(三维位置和方向)。使用这个估计,地面控制站(GCS)可以在降落在快速巡逻艇(FPB)上时控制无人机的轨迹。地面视觉系统使得使用更复杂的算法成为可能,因为我们有更多可用的处理能力。提出的方法使用基于粒子滤波器(PF)的3D模型方法,分为五个阶段:(i)帧捕获,(ii)目标检测,(iii)失真校正,(iv)基于外观的姿态采样器和(v)姿态估计。在帧捕获阶段,我们获得一个新的观测值(一个新帧)。在目标检测阶段,我们使用基于深度神经网络(DNN)的检测器检测捕获帧上的无人机区域。在畸变校正阶段,我们对帧的径向和切向畸变进行校正,以获得更好的估计。在基于外观的姿态采样阶段,我们使用合成的预训练数据库进行粗略的姿态初始化。在姿态估计阶段,我们采用了一种优化算法,能够在捕获帧中以低误差获得无人机姿态估计。使用图形处理单元(GPU)进行并行处理,提高了系统的整体性能。结果表明,GPU计算资源是获得实时姿态估计系统所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信