Efficient Indexing of Regional Maximum Activations of Convolutions using Full-Text Search Engines

Giuseppe Amato, F. Carrara, F. Falchi, C. Gennaro
{"title":"Efficient Indexing of Regional Maximum Activations of Convolutions using Full-Text Search Engines","authors":"Giuseppe Amato, F. Carrara, F. Falchi, C. Gennaro","doi":"10.1145/3078971.3079035","DOIUrl":null,"url":null,"abstract":"In this paper, we adapt a surrogate text representation technique to develop efficient instance-level image retrieval using Regional Maximum Activations of Convolutions (R-MAC). R-MAC features have recently showed outstanding performance in visual instance retrieval. However, contrary to the activations of hidden layers adopting ReLU (Rectified Linear Unit), these features are dense. This constitutes an obstacle to the direct use of inverted indexes, which rely on sparsity of data. We propose the use of deep permutations, a recent approach for efficient evaluation of permutations, to generate surrogate text representation of R-MAC features, enabling indexing of visual features as text into a standard search-engine. The experiments, conducted on Lucene, show the effectiveness and efficiency of the proposed approach.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we adapt a surrogate text representation technique to develop efficient instance-level image retrieval using Regional Maximum Activations of Convolutions (R-MAC). R-MAC features have recently showed outstanding performance in visual instance retrieval. However, contrary to the activations of hidden layers adopting ReLU (Rectified Linear Unit), these features are dense. This constitutes an obstacle to the direct use of inverted indexes, which rely on sparsity of data. We propose the use of deep permutations, a recent approach for efficient evaluation of permutations, to generate surrogate text representation of R-MAC features, enabling indexing of visual features as text into a standard search-engine. The experiments, conducted on Lucene, show the effectiveness and efficiency of the proposed approach.
利用全文搜索引擎高效索引卷积的区域最大激活
在本文中,我们采用代理文本表示技术,利用区域最大卷积激活(R-MAC)开发高效的实例级图像检索。近年来,R-MAC特征在可视化实例检索方面表现出了优异的性能。然而,与采用ReLU(整流线性单元)激活的隐藏层相反,这些特征是密集的。这对直接使用依赖于数据稀疏性的倒排索引构成了障碍。我们建议使用深度排列(一种有效评估排列的最新方法)来生成R-MAC特征的代理文本表示,从而将视觉特征作为文本编入标准搜索引擎。在Lucene上进行的实验表明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信