Multi-Pose Face Detection with Asymmetric Haar Features

Geovany A. Ramírez, O. Fuentes
{"title":"Multi-Pose Face Detection with Asymmetric Haar Features","authors":"Geovany A. Ramírez, O. Fuentes","doi":"10.1109/WACV.2008.4544013","DOIUrl":null,"url":null,"abstract":"In this paper we present a system for multi-pose face detection. Our system presents three main contributions. First, we introduce the use of asymmetric Haar features. Asymmetric Haar features provide a rich feature space, which allows to build classifiers that are accurate and much simpler than those obtained with other features. The second contribution is the use of a genetic algorithm to search efficiently in the extremely large parameter space of potential features. Using this genetic algorithm, we generate a feature set that allows to exploit the expressive advantage of asymmetric Haar features and is small enough to permit exhaustive evaluation. The third contribution is the application of a skin color-segmentation scheme to reduce the search space. Our system uses specialized detectors in different face poses that are built using AdaBoost and the C4.5 rule induction algorithm. Experimental results using the CMU profile test set and BioID frontal faces test set, in addition to our own multi-pose face test set, show that our system is competitive with other systems presented recently in the literature.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper we present a system for multi-pose face detection. Our system presents three main contributions. First, we introduce the use of asymmetric Haar features. Asymmetric Haar features provide a rich feature space, which allows to build classifiers that are accurate and much simpler than those obtained with other features. The second contribution is the use of a genetic algorithm to search efficiently in the extremely large parameter space of potential features. Using this genetic algorithm, we generate a feature set that allows to exploit the expressive advantage of asymmetric Haar features and is small enough to permit exhaustive evaluation. The third contribution is the application of a skin color-segmentation scheme to reduce the search space. Our system uses specialized detectors in different face poses that are built using AdaBoost and the C4.5 rule induction algorithm. Experimental results using the CMU profile test set and BioID frontal faces test set, in addition to our own multi-pose face test set, show that our system is competitive with other systems presented recently in the literature.
基于非对称Haar特征的多姿态人脸检测
本文提出了一种多姿态人脸检测系统。我们的系统有三个主要贡献。首先,我们介绍了非对称Haar特征的使用。非对称Haar特征提供了丰富的特征空间,这使得构建的分类器比使用其他特征获得的分类器更准确、更简单。第二个贡献是利用遗传算法在极大的潜在特征参数空间中进行高效搜索。使用这种遗传算法,我们生成了一个特征集,该特征集允许利用非对称Haar特征的表达优势,并且足够小,可以进行详尽的评估。第三个贡献是应用皮肤颜色分割方案来减少搜索空间。我们的系统使用使用AdaBoost和C4.5规则归纳算法构建的不同面部姿势的专门检测器。使用CMU轮廓测试集和BioID正面人脸测试集以及我们自己的多姿态人脸测试集进行的实验结果表明,我们的系统与最近文献中提出的其他系统具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信