Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification

Jingliang Hu, Pedram Ghamisi, A. Schmitt, Xiaoxiang Zhu
{"title":"Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification","authors":"Jingliang Hu, Pedram Ghamisi, A. Schmitt, Xiaoxiang Zhu","doi":"10.1109/WHISPERS.2016.8071752","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.
基于地物的极化SAR与高光谱影像融合土地利用分类
本文提出了一种基于目标的极化合成孔径雷达(PolSAR)和高光谱数据联合使用的融合方法。该方法基于对象级别从两个数据集中提取信息,用于土地利用分类。分类结果表明,本文提出的方法提高了高光谱和PolSAR数据的分类性能,并能较好地收集两种数据集的互补信息。融合方法还考虑到只有有限的训练样本,这是遥感中经常出现的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信