Jingliang Hu, Pedram Ghamisi, A. Schmitt, Xiaoxiang Zhu
{"title":"Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification","authors":"Jingliang Hu, Pedram Ghamisi, A. Schmitt, Xiaoxiang Zhu","doi":"10.1109/WHISPERS.2016.8071752","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.