Cooperative co-learning: a model-based approach for solving multi-agent reinforcement problems

B. Scherrer, F. Charpillet
{"title":"Cooperative co-learning: a model-based approach for solving multi-agent reinforcement problems","authors":"B. Scherrer, F. Charpillet","doi":"10.1109/TAI.2002.1180839","DOIUrl":null,"url":null,"abstract":"Solving multiagent reinforcement learning problems is a key issue. Indeed, the complexity of deriving multiagent plans, especially when one uses an explicit model of the problem, is dramatically increasing with the number of agents. This papers introduces a general iterative heuristic: at each step one chooses a sub-group of agents and update their policies to optimize the task given the rest of agents have fixed plans. We analyse this process in a general purpose and show how it can be applied to Markov decision processes, partially observable Markov decision processes and decentralized partially observable Markov decision processes.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Solving multiagent reinforcement learning problems is a key issue. Indeed, the complexity of deriving multiagent plans, especially when one uses an explicit model of the problem, is dramatically increasing with the number of agents. This papers introduces a general iterative heuristic: at each step one chooses a sub-group of agents and update their policies to optimize the task given the rest of agents have fixed plans. We analyse this process in a general purpose and show how it can be applied to Markov decision processes, partially observable Markov decision processes and decentralized partially observable Markov decision processes.
合作共同学习:一种基于模型的多智能体强化问题解决方法
解决多智能体强化学习问题是一个关键问题。事实上,推导多智能体计划的复杂性,特别是当一个人使用一个明确的问题模型时,随着智能体的数量急剧增加。本文介绍了一种通用迭代启发式算法:在给定其他智能体有固定计划的情况下,每一步选择一个子智能体组并更新其策略以优化任务。我们分析了这一过程的一般目的,并展示了如何将其应用于马尔可夫决策过程、部分可观察马尔可夫决策过程和分散的部分可观察马尔可夫决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信