Improving reliability of people tracking by adding semantic reasoning

L. Greco, Pierluigi Ritrovato, Alessia Saggese, M. Vento
{"title":"Improving reliability of people tracking by adding semantic reasoning","authors":"L. Greco, Pierluigi Ritrovato, Alessia Saggese, M. Vento","doi":"10.1109/AVSS.2016.7738025","DOIUrl":null,"url":null,"abstract":"Even the best performing object tracking algorithm on well known datasets, commits several errors that prevent a concrete adoption in real case scenarios unless you do not accept some compromise about tracking quality and reliability. The aim of this paper is to demonstrate that adding to a traditional object tracking solution a knowledge based reasoner build on top of semantic web technologies, it is possible to identify and properly manage common tracking problems. The proposed approach has been evaluated using View 001 and View 003 of the PETS2009 dataset with interesting results.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Even the best performing object tracking algorithm on well known datasets, commits several errors that prevent a concrete adoption in real case scenarios unless you do not accept some compromise about tracking quality and reliability. The aim of this paper is to demonstrate that adding to a traditional object tracking solution a knowledge based reasoner build on top of semantic web technologies, it is possible to identify and properly manage common tracking problems. The proposed approach has been evaluated using View 001 and View 003 of the PETS2009 dataset with interesting results.
增加语义推理,提高人员跟踪的可靠性
即使是在众所周知的数据集上表现最好的对象跟踪算法,也会犯一些错误,妨碍在实际情况下的具体采用,除非你不接受在跟踪质量和可靠性方面做出一些妥协。本文的目的是证明,在传统的对象跟踪解决方案中添加一个基于知识的推理器,建立在语义web技术之上,可以识别和适当管理常见的跟踪问题。使用PETS2009数据集的视图001和视图003对所提出的方法进行了评估,得到了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信