{"title":"Multiple-source Entity Linking with Incomplete Sources","authors":"Q. Liu, Shui Liu, Lemao Liu, Bo Xiao","doi":"10.1109/IALP48816.2019.9037718","DOIUrl":null,"url":null,"abstract":"This paper introduces a new entity linking task from a well-known online video application in industry, where both entities and mentions are represented by multiple sources but some of them may be missing. To address the issue of incomplete sources, it proposes a novel neural approach to model the linking relationship between a pair of an entity and a mention. To verify the proposed approach to this task, it further creates a large scale dataset including 70k examples. Experiments on this dataset empirically demonstrate that the proposed approach is effective over a baseline and particularly it is robust to the missing sources in some extent.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new entity linking task from a well-known online video application in industry, where both entities and mentions are represented by multiple sources but some of them may be missing. To address the issue of incomplete sources, it proposes a novel neural approach to model the linking relationship between a pair of an entity and a mention. To verify the proposed approach to this task, it further creates a large scale dataset including 70k examples. Experiments on this dataset empirically demonstrate that the proposed approach is effective over a baseline and particularly it is robust to the missing sources in some extent.