Analyzing thermal integrity profiling data for drilled shaft evaluation

K. R. Johnson
{"title":"Analyzing thermal integrity profiling data for drilled shaft evaluation","authors":"K. R. Johnson","doi":"10.1080/19375247.2016.1169361","DOIUrl":null,"url":null,"abstract":"Thermal integrity profiling (TIP) is the most recent non-destructive test method to gain widespread popularity in post-construction evaluation of drilled shafts. The allure lies in its ability to detect anomalies across the entire cross-section of a shaft as well as provide a measure of lateral cage alignment. Similarly remarkable, early developments showed that the shape of a temperature profile (with depth) matched closely with the shape of the shaft, thus allowing for a fairly straightforward interpretation of data. Immediately apparent however, was that the relationship between shape and temperature was with two major exceptions: (1) near the ends of the shaft where heat can escape both radially and longitudinally and (2) where drastic changes in the surroundings are encountered (e.g. soil to water, soil to air). Today, methods for analyzing these portions of data exist, but can often involve tedious levels of parameter iterations and trial-and-error thermal modeling. This is particularly true when the effects of time are not well understood. A comparison of model and field results is presented to provide further insight into these types of temperature distributions and to address the difficulties associated with their analysis. This paper shows how thermal modeling can be used to track the effects of time on analysis, and concludes with case studies that demonstrate the findings.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19375247.2016.1169361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Thermal integrity profiling (TIP) is the most recent non-destructive test method to gain widespread popularity in post-construction evaluation of drilled shafts. The allure lies in its ability to detect anomalies across the entire cross-section of a shaft as well as provide a measure of lateral cage alignment. Similarly remarkable, early developments showed that the shape of a temperature profile (with depth) matched closely with the shape of the shaft, thus allowing for a fairly straightforward interpretation of data. Immediately apparent however, was that the relationship between shape and temperature was with two major exceptions: (1) near the ends of the shaft where heat can escape both radially and longitudinally and (2) where drastic changes in the surroundings are encountered (e.g. soil to water, soil to air). Today, methods for analyzing these portions of data exist, but can often involve tedious levels of parameter iterations and trial-and-error thermal modeling. This is particularly true when the effects of time are not well understood. A comparison of model and field results is presented to provide further insight into these types of temperature distributions and to address the difficulties associated with their analysis. This paper shows how thermal modeling can be used to track the effects of time on analysis, and concludes with case studies that demonstrate the findings.
钻井热完整性剖面数据分析
热完整性剖面法(TIP)是近年来在井筒施工后评价中得到广泛应用的一种无损检测方法。它的吸引力在于能够检测井筒整个横截面的异常情况,并提供横向保持架对齐的测量。同样值得注意的是,早期的发展表明,温度剖面的形状(含深度)与竖井的形状密切匹配,因此可以相当直接地解释数据。然而,显而易见的是,形状和温度之间的关系有两个主要的例外:(1)在轴的末端附近,热量可以径向和纵向逃逸;(2)在周围环境发生剧烈变化的地方(例如,土壤到水,土壤到空气)。今天,分析这些数据部分的方法已经存在,但往往涉及繁琐的参数迭代和试错热建模。当时间的影响还没有被很好地理解时,情况尤其如此。本文提出了模型和现场结果的比较,以进一步了解这些类型的温度分布,并解决与分析相关的困难。本文展示了如何使用热建模来跟踪时间对分析的影响,并通过案例研究来证明研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信