Support-vector conditional density estimation for nonlinear filtering

P. Krauthausen, Marco F. Huber, U. Hanebeck
{"title":"Support-vector conditional density estimation for nonlinear filtering","authors":"P. Krauthausen, Marco F. Huber, U. Hanebeck","doi":"10.1109/ICIF.2010.5712088","DOIUrl":null,"url":null,"abstract":"A non-parametric conditional density estimation algorithm for nonlinear stochastic dynamic systems is proposed. The contributions are a novel support vector regression for estimating conditional densities, modeled by Gaussian mixture densities, and an algorithm based on cross-validation for automatically determining hyper-parameters for the regression. The conditional densities are employed with a modified axis-aligned Gaussian mixture filter. The experimental validation shows the high quality of the conditional densities and good accuracy of the proposed filter.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A non-parametric conditional density estimation algorithm for nonlinear stochastic dynamic systems is proposed. The contributions are a novel support vector regression for estimating conditional densities, modeled by Gaussian mixture densities, and an algorithm based on cross-validation for automatically determining hyper-parameters for the regression. The conditional densities are employed with a modified axis-aligned Gaussian mixture filter. The experimental validation shows the high quality of the conditional densities and good accuracy of the proposed filter.
非线性滤波的支持向量条件密度估计
提出了一种非线性随机动力系统的非参数条件密度估计算法。贡献是用于估计条件密度的新型支持向量回归,由高斯混合密度建模,以及基于交叉验证的算法,用于自动确定回归的超参数。条件密度采用改进的轴向高斯混合滤波器。实验验证表明,该滤波器的条件密度质量高,精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信