Probabilistic Behaviour Signatures: Feature-based behaviour recognition in data-scarce domains

R. Baxter, N. Robertson, D. Lane
{"title":"Probabilistic Behaviour Signatures: Feature-based behaviour recognition in data-scarce domains","authors":"R. Baxter, N. Robertson, D. Lane","doi":"10.1109/ICIF.2010.5712000","DOIUrl":null,"url":null,"abstract":"In this paper we present a new method to provide situation awareness via the automatic recognition of behaviour in video. In contrast to many other approaches, the presented method does not require many training exemplars. We introduce Probabilistic Behaviour Signatures to represent the goals of a person agent as sets of features. We do not assume temporal ordering of observed actions is necessary. Inference is performed using an extension of the Rao-Blackwellised Particle Filter. We validate our approach using simulated image trajectories which represent three high-level behaviours. We compare performance to a trained Hidden Markov Model Particle Filter (HMM PF) and show that our approach achieves 92% accuracy at video frame rate. Our method is also significantly more robust than the HMM PF in the presence of noise.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a new method to provide situation awareness via the automatic recognition of behaviour in video. In contrast to many other approaches, the presented method does not require many training exemplars. We introduce Probabilistic Behaviour Signatures to represent the goals of a person agent as sets of features. We do not assume temporal ordering of observed actions is necessary. Inference is performed using an extension of the Rao-Blackwellised Particle Filter. We validate our approach using simulated image trajectories which represent three high-level behaviours. We compare performance to a trained Hidden Markov Model Particle Filter (HMM PF) and show that our approach achieves 92% accuracy at video frame rate. Our method is also significantly more robust than the HMM PF in the presence of noise.
概率行为签名:数据稀缺领域中基于特征的行为识别
本文提出了一种通过视频中行为的自动识别来提供态势感知的新方法。与许多其他方法相比,本文提出的方法不需要许多训练范例。我们引入概率行为签名来将人代理的目标表示为特征集。我们不认为观察到的动作的时间顺序是必要的。推理是使用rao - blackwell化粒子滤波的扩展来执行的。我们使用代表三种高级行为的模拟图像轨迹来验证我们的方法。我们将性能与训练过的隐马尔可夫模型粒子滤波器(HMM PF)进行了比较,并表明我们的方法在视频帧率下达到92%的准确率。在存在噪声的情况下,我们的方法也比HMM PF具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信