Spatio-temporal LBP Based Moving Object Segmentation in Compressed Domain

Jianwei Yang, Shizheng Wang, Zhen Lei, Yanyun Zhao, S. Li
{"title":"Spatio-temporal LBP Based Moving Object Segmentation in Compressed Domain","authors":"Jianwei Yang, Shizheng Wang, Zhen Lei, Yanyun Zhao, S. Li","doi":"10.1109/AVSS.2012.68","DOIUrl":null,"url":null,"abstract":"With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.
基于时空LBP的压缩域运动目标分割
随着监控数据量的不断增加,压缩域的运动目标分割受到了学术界和工业界的广泛关注。本文针对H.264压缩监控视频,提出了一种新的运动目标分割方法。首先,对运动矢量(MV)进行累积和滤波,获得可靠的运动信息;其次,考虑相邻块之间的时空相关性,提取mv的时空局部二值模式(LBP)特征,得到粗糙的初始目标区域;最后,基于离散余弦变换系数进行了边界修改的粗到精分割算法。实验结果表明,该方法不仅可以较准确地提取压缩视频中的目标,而且具有较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信