A Survey of Hybrid Deep Learning Methods for Traffic Flow Prediction

Yan Shi, Haoran Feng, Xiongfei Geng, Xingui Tang, Yongcai Wang
{"title":"A Survey of Hybrid Deep Learning Methods for Traffic Flow Prediction","authors":"Yan Shi, Haoran Feng, Xiongfei Geng, Xingui Tang, Yongcai Wang","doi":"10.1145/3373419.3373429","DOIUrl":null,"url":null,"abstract":"Traffic flow prediction using big data and deep learning attracts great attentions in recent years. Researchers show that DNN models can provide better traffic prediction accuracy than the traditional shallow models. Since the traffic flow reveals both spatial and temporal dependency characteristics, and may be impacted by weather, social event data etc., therefore, a set of hybrid DNN models have been presented recently in literature for further improving the traffic flow prediction performances. The hybrid models can capture dependency in multi-dimension and show better prediction performances than simple DNN models. This paper presents a thorough review and comparison of hybrid deep learning models for traffic flow prediction. We review the data sources used in hybrid deep learning and the various hybrid deep learning models built for trafficc flow prediction. The benefits of using hybrid models are summarized.","PeriodicalId":352528,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373419.3373429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Traffic flow prediction using big data and deep learning attracts great attentions in recent years. Researchers show that DNN models can provide better traffic prediction accuracy than the traditional shallow models. Since the traffic flow reveals both spatial and temporal dependency characteristics, and may be impacted by weather, social event data etc., therefore, a set of hybrid DNN models have been presented recently in literature for further improving the traffic flow prediction performances. The hybrid models can capture dependency in multi-dimension and show better prediction performances than simple DNN models. This paper presents a thorough review and comparison of hybrid deep learning models for traffic flow prediction. We review the data sources used in hybrid deep learning and the various hybrid deep learning models built for trafficc flow prediction. The benefits of using hybrid models are summarized.
交通流预测的混合深度学习方法综述
近年来,利用大数据和深度学习技术进行交通流量预测备受关注。研究表明,深度神经网络模型可以提供比传统浅模型更好的交通预测精度。由于交通流具有时空依赖特征,并可能受到天气、社会事件等数据的影响,为了进一步提高交通流的预测性能,最近有文献提出了一套混合DNN模型。混合模型能够在多维度上捕获相关性,比简单深度神经网络模型具有更好的预测性能。本文对用于交通流预测的混合深度学习模型进行了全面的回顾和比较。我们回顾了混合深度学习中使用的数据源以及为交通流量预测构建的各种混合深度学习模型。总结了使用混合模型的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信