A new approach to dynamic network routing using Omicron Ant Colony algorithm

O. Verma, Nimish Gupta, Mohit Sharma, Pankaj Nanda, Sandeep Chawla
{"title":"A new approach to dynamic network routing using Omicron Ant Colony algorithm","authors":"O. Verma, Nimish Gupta, Mohit Sharma, Pankaj Nanda, Sandeep Chawla","doi":"10.1109/ICECTECH.2011.5941980","DOIUrl":null,"url":null,"abstract":"The paper introduces a new approach to network routing using the adaptive learning techniques of Ant Colony Optimization (ACO) framework. The proposed algorithm is based on the two ACO algorithms AntNet and Omicron Ant Colony Optimization (OA). In principle, the algorithm uses the mobile agents (ants) to collect information about the network. The ants exchange this collected data using stigmergic communication. In an attempt to decrease the packet delay and improve throughput new methods and data structures have been introduced. The algorithm adopts OA's approach to initialize and update the pheromone values. In addition, it introduces solution tables to hold a set of good solutions at any given time. Further, to select the next-hops the algorithm includes methods, namely, deterministic dual step method and roulette-wheel selection. The algorithm is simulated on the NSFNET topology using ns-2. On comparing the delay and throughput values with standard AntNet algorithm, a considerable improvement is observed, thereby denoting an enhanced efficiency of routing.","PeriodicalId":184011,"journal":{"name":"2011 3rd International Conference on Electronics Computer Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Electronics Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2011.5941980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper introduces a new approach to network routing using the adaptive learning techniques of Ant Colony Optimization (ACO) framework. The proposed algorithm is based on the two ACO algorithms AntNet and Omicron Ant Colony Optimization (OA). In principle, the algorithm uses the mobile agents (ants) to collect information about the network. The ants exchange this collected data using stigmergic communication. In an attempt to decrease the packet delay and improve throughput new methods and data structures have been introduced. The algorithm adopts OA's approach to initialize and update the pheromone values. In addition, it introduces solution tables to hold a set of good solutions at any given time. Further, to select the next-hops the algorithm includes methods, namely, deterministic dual step method and roulette-wheel selection. The algorithm is simulated on the NSFNET topology using ns-2. On comparing the delay and throughput values with standard AntNet algorithm, a considerable improvement is observed, thereby denoting an enhanced efficiency of routing.
基于Omicron蚁群算法的动态网络路由新方法
本文介绍了一种利用蚁群优化(ACO)框架的自适应学习技术进行网络路由的新方法。该算法基于蚁群算法AntNet和Omicron蚁群优化(OA)。在原理上,该算法使用移动代理(蚂蚁)来收集网络信息。蚂蚁们通过污名交流来交换收集到的数据。为了减少数据包延迟和提高吞吐量,引入了新的方法和数据结构。该算法采用OA方法对信息素值进行初始化和更新。此外,它还引入了解决方案表,以便在任何给定时间保存一组好的解决方案。此外,下一跳的选择算法包括确定性双步法和轮盘选择法。采用ns-2在NSFNET拓扑上对该算法进行了仿真。通过与标准AntNet算法的延迟值和吞吐量值的比较,可以观察到相当大的改进,从而表明路由效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信