Detection of Brain Tumor in MRI Images, Using a Combination of Fuzzy C-Means and Thresholding

Y. Hamad, K. Simonov, Mohammad B. Naeem
{"title":"Detection of Brain Tumor in MRI Images, Using a Combination of Fuzzy C-Means and Thresholding","authors":"Y. Hamad, K. Simonov, Mohammad B. Naeem","doi":"10.4018/IJAPUC.2019010104","DOIUrl":null,"url":null,"abstract":"The identification, segmentation, and detection of the infected area in brain tumor is a tedious and a time-consuming task. The different structures of the human body can be visualized by an image processing concept, an MRI. It is very difficult to visualize abnormal structures of the human brain using simple imaging techniques. An MRI technique contains many imaging modalities that scan and capture the internal structure of the human brain. This article concentrates on a noise removal technique, followed by improvement of medical images for a correct diagnosis using a balance contrast enhancement technique (BCET). Then, image segmentation is used. Finally, the Canny edge detection method is applied to detect the fine edges. The experiment results achieved nearly 98% accuracy in detecting the area of the tumor and normal brain regions in MRI images demonstrating the effectiveness of the proposed technique.","PeriodicalId":145240,"journal":{"name":"Int. J. Adv. Pervasive Ubiquitous Comput.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Adv. Pervasive Ubiquitous Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJAPUC.2019010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The identification, segmentation, and detection of the infected area in brain tumor is a tedious and a time-consuming task. The different structures of the human body can be visualized by an image processing concept, an MRI. It is very difficult to visualize abnormal structures of the human brain using simple imaging techniques. An MRI technique contains many imaging modalities that scan and capture the internal structure of the human brain. This article concentrates on a noise removal technique, followed by improvement of medical images for a correct diagnosis using a balance contrast enhancement technique (BCET). Then, image segmentation is used. Finally, the Canny edge detection method is applied to detect the fine edges. The experiment results achieved nearly 98% accuracy in detecting the area of the tumor and normal brain regions in MRI images demonstrating the effectiveness of the proposed technique.
基于模糊c均值和阈值相结合的MRI图像脑肿瘤检测
脑肿瘤感染区域的识别、分割和检测是一项繁琐而耗时的工作。人体的不同结构可以通过图像处理概念,核磁共振成像可视化。用简单的成像技术来可视化人脑的异常结构是非常困难的。核磁共振成像技术包含许多成像模式,可以扫描和捕捉人类大脑的内部结构。本文重点介绍了一种噪声去除技术,然后使用平衡对比度增强技术(BCET)对医学图像进行改进,以获得正确的诊断。然后,使用图像分割。最后,采用Canny边缘检测方法对精细边缘进行检测。实验结果表明,在MRI图像中检测肿瘤区域和正常脑区域的准确率接近98%,证明了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信