A supervised subtype differentiation learning for building invariant features of non-small cell lung cancer in a latent space of a Variational Autoencoder
F. Cano, Charlens Alvarez-Jimenez, D. Becerra, A. Siabatto, Angel Cruz-Roa, E. Romero
{"title":"A supervised subtype differentiation learning for building invariant features of non-small cell lung cancer in a latent space of a Variational Autoencoder","authors":"F. Cano, Charlens Alvarez-Jimenez, D. Becerra, A. Siabatto, Angel Cruz-Roa, E. Romero","doi":"10.1117/12.2606255","DOIUrl":null,"url":null,"abstract":"This work presents a novel quantification of the cancer extension using a latent space embedded metrics of a variational autoencoder which captures the invariant patterns of the disease and projects them into a smaller latent space where data relations are linear, making it possible to apply simple metrics to quantify complicated relations. Selected patches of non-small cell lung cancer are projected to such latent space and a logistic regression model assigns an Euclidean distance between the patches projected in space. A simple grouping strategy quantitatively stratifies the characteristic patterns of the most representative patches for both adenocarcinoma and squamous cell lung cancer classes but it also estimates the composition of a mixture of patterns. This approach is fully interpretable, integrable with a pathology work flow and an objective characterization of diseases with complex patterns.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"310 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2606255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel quantification of the cancer extension using a latent space embedded metrics of a variational autoencoder which captures the invariant patterns of the disease and projects them into a smaller latent space where data relations are linear, making it possible to apply simple metrics to quantify complicated relations. Selected patches of non-small cell lung cancer are projected to such latent space and a logistic regression model assigns an Euclidean distance between the patches projected in space. A simple grouping strategy quantitatively stratifies the characteristic patterns of the most representative patches for both adenocarcinoma and squamous cell lung cancer classes but it also estimates the composition of a mixture of patterns. This approach is fully interpretable, integrable with a pathology work flow and an objective characterization of diseases with complex patterns.