A supervised subtype differentiation learning for building invariant features of non-small cell lung cancer in a latent space of a Variational Autoencoder

F. Cano, Charlens Alvarez-Jimenez, D. Becerra, A. Siabatto, Angel Cruz-Roa, E. Romero
{"title":"A supervised subtype differentiation learning for building invariant features of non-small cell lung cancer in a latent space of a Variational Autoencoder","authors":"F. Cano, Charlens Alvarez-Jimenez, D. Becerra, A. Siabatto, Angel Cruz-Roa, E. Romero","doi":"10.1117/12.2606255","DOIUrl":null,"url":null,"abstract":"This work presents a novel quantification of the cancer extension using a latent space embedded metrics of a variational autoencoder which captures the invariant patterns of the disease and projects them into a smaller latent space where data relations are linear, making it possible to apply simple metrics to quantify complicated relations. Selected patches of non-small cell lung cancer are projected to such latent space and a logistic regression model assigns an Euclidean distance between the patches projected in space. A simple grouping strategy quantitatively stratifies the characteristic patterns of the most representative patches for both adenocarcinoma and squamous cell lung cancer classes but it also estimates the composition of a mixture of patterns. This approach is fully interpretable, integrable with a pathology work flow and an objective characterization of diseases with complex patterns.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"310 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2606255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel quantification of the cancer extension using a latent space embedded metrics of a variational autoencoder which captures the invariant patterns of the disease and projects them into a smaller latent space where data relations are linear, making it possible to apply simple metrics to quantify complicated relations. Selected patches of non-small cell lung cancer are projected to such latent space and a logistic regression model assigns an Euclidean distance between the patches projected in space. A simple grouping strategy quantitatively stratifies the characteristic patterns of the most representative patches for both adenocarcinoma and squamous cell lung cancer classes but it also estimates the composition of a mixture of patterns. This approach is fully interpretable, integrable with a pathology work flow and an objective characterization of diseases with complex patterns.
在变分自编码器的潜在空间中建立非小细胞肺癌的不变特征的监督亚型分化学习
这项工作提出了一种新的癌症扩展量化方法,使用变分自编码器的潜在空间嵌入指标,该指标捕获疾病的不变模式,并将它们投射到较小的潜在空间中,其中数据关系是线性的,从而可以应用简单的指标来量化复杂的关系。将选定的非小细胞肺癌斑块投射到该潜伏空间中,并通过逻辑回归模型在空间中投影的斑块之间分配欧几里得距离。一个简单的分组策略定量地对腺癌和鳞状细胞肺癌两类最具代表性斑块的特征模式进行分层,但它也估计了混合模式的组成。这种方法是完全可解释的,可与病理工作流程和复杂模式的疾病客观表征整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信