Design and Performance Comparison of CNN Accelerators Based on the Intel Movidius Myriad2 SoC and FPGA Embedded Prototype

A. Kyriakos, E. Papatheofanous, Bezaitis Charalampos, Evangelos Petrongonas, D. Soudris, D. Reisis
{"title":"Design and Performance Comparison of CNN Accelerators Based on the Intel Movidius Myriad2 SoC and FPGA Embedded Prototype","authors":"A. Kyriakos, E. Papatheofanous, Bezaitis Charalampos, Evangelos Petrongonas, D. Soudris, D. Reisis","doi":"10.1109/ICCAIRO47923.2019.00030","DOIUrl":null,"url":null,"abstract":"Evolving Convolutional Neural Networks (CNNs) and their execution time performance are key factors for a wide range of applications that are based on deep learning. The need for meeting the applications' time constraints led to design AI accelerators and the current work contributes to this effort by presenting CNN accelerators based on two different design approaches: a) developing CNNs on a power efficient System on Chip (SoC), the Myriad2 and b) a VHDL application specific design and the corresponding FPGA architecture. Both systems target the optimization of time performance regarding the MNIST dataset application. The paper describes the two systems and compares the performance results.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Evolving Convolutional Neural Networks (CNNs) and their execution time performance are key factors for a wide range of applications that are based on deep learning. The need for meeting the applications' time constraints led to design AI accelerators and the current work contributes to this effort by presenting CNN accelerators based on two different design approaches: a) developing CNNs on a power efficient System on Chip (SoC), the Myriad2 and b) a VHDL application specific design and the corresponding FPGA architecture. Both systems target the optimization of time performance regarding the MNIST dataset application. The paper describes the two systems and compares the performance results.
基于Intel Movidius Myriad2 SoC与FPGA嵌入式样机的CNN加速器设计与性能比较
进化卷积神经网络(cnn)及其执行时间性能是基于深度学习的广泛应用的关键因素。为了满足应用程序的时间限制,需要设计人工智能加速器,目前的工作通过提出基于两种不同设计方法的CNN加速器来促进这一努力:a)在低功耗的片上系统(SoC)上开发CNN, Myriad2和b) VHDL应用程序特定设计和相应的FPGA架构。两个系统都针对MNIST数据集应用程序的时间性能进行优化。本文介绍了两种系统,并对性能结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信