Box and Cox power-transformation to additivity and homoscedasticity in regression

T. Hamasaki, Tomoyuki Sugimoto, M. Goto
{"title":"Box and Cox power-transformation to additivity and homoscedasticity in regression","authors":"T. Hamasaki, Tomoyuki Sugimoto, M. Goto","doi":"10.5183/JJSCS.23.1_13","DOIUrl":null,"url":null,"abstract":"We describe a Box and Cox power-transformation to simultaneously provide additivity and homoscedasticity in regression. The two methods developed here are extensions of the power-additive transformation (PAT) discussed by Goto (1992, 1995) and Hamasaki and Goto (2005). The PAT aims to improve the additivity or linearity of some simple model represented by linear predicators. We then consider combinations of the PAT with the weighting and transform-both-sides methods. We discuss the procedures to find the maximum likelihood estimates of parameters and then consider the relationship between the methods. Also, we compare the performances of the methods through a simulation study.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.23.1_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a Box and Cox power-transformation to simultaneously provide additivity and homoscedasticity in regression. The two methods developed here are extensions of the power-additive transformation (PAT) discussed by Goto (1992, 1995) and Hamasaki and Goto (2005). The PAT aims to improve the additivity or linearity of some simple model represented by linear predicators. We then consider combinations of the PAT with the weighting and transform-both-sides methods. We discuss the procedures to find the maximum likelihood estimates of parameters and then consider the relationship between the methods. Also, we compare the performances of the methods through a simulation study.
回归中可加性和均方差的Box和Cox幂变换
我们描述了一个Box和Cox幂变换来同时提供回归中的可加性和均方差。这里开发的两种方法是后藤(1992,1995)和滨崎和后藤(2005)讨论的功率加性变换(PAT)的扩展。PAT旨在提高由线性预测器表示的简单模型的可加性或线性性。然后,我们考虑将PAT与加权和两边变换方法相结合。我们讨论了找到参数的最大似然估计的程序,然后考虑了方法之间的关系。通过仿真研究,比较了两种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信