An Efficient LSTM Model for Fake News Detection

Jayesh Soni
{"title":"An Efficient LSTM Model for Fake News Detection","authors":"Jayesh Soni","doi":"10.5121/cseij.2022.12201","DOIUrl":null,"url":null,"abstract":"Information spread through online social media or sites has increased drastically with the swift growth of the Internet. Unverified or fake news reaches numerous users without concern about the trustworthiness of the info. Such fake news is created for political or commercial interests to mislead the users. In current society, the spread of misinformation is a big challenge. Hence, we propose a deep learning-based Long Short Term Memory (LSTM) classifier for fake news classification. Textual content is the primary unit in the fake news scenario. Therefore, natural language processing-based feature extraction is used to generate language-driven features. Experimental results show that NLP-based featured extraction with LSTM model achieves a higher accuracy rate in discernible less time.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information spread through online social media or sites has increased drastically with the swift growth of the Internet. Unverified or fake news reaches numerous users without concern about the trustworthiness of the info. Such fake news is created for political or commercial interests to mislead the users. In current society, the spread of misinformation is a big challenge. Hence, we propose a deep learning-based Long Short Term Memory (LSTM) classifier for fake news classification. Textual content is the primary unit in the fake news scenario. Therefore, natural language processing-based feature extraction is used to generate language-driven features. Experimental results show that NLP-based featured extraction with LSTM model achieves a higher accuracy rate in discernible less time.
一种有效的LSTM假新闻检测模型
随着互联网的迅速发展,通过在线社交媒体或网站传播的信息急剧增加。未经证实或虚假的新闻传播给无数用户,而不关心信息的可信度。这些假新闻是为了政治或商业利益而制造的,误导用户。在当今社会,错误信息的传播是一个巨大的挑战。因此,我们提出了一种基于深度学习的长短期记忆(LSTM)分类器用于假新闻分类。文本内容是假新闻场景中的主要单位。因此,基于自然语言处理的特征提取被用于生成语言驱动的特征。实验结果表明,基于nlp的LSTM模型特征提取在可识别的更短时间内获得了更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信