E. Garza-Arias, J. Rosas-Caro, J. E. Valdez-Resendiz, J. Mayo-Maldonado, G. Escobar-Valderrama, J. Loranca-Coutiño, C. Villarreal-Hernandez, Leonardo J. Valdivia
{"title":"A Novel Boost Converter Topology with Non-Pulsating Input and Output Current","authors":"E. Garza-Arias, J. Rosas-Caro, J. E. Valdez-Resendiz, J. Mayo-Maldonado, G. Escobar-Valderrama, J. Loranca-Coutiño, C. Villarreal-Hernandez, Leonardo J. Valdivia","doi":"10.1109/ECCE44975.2020.9235403","DOIUrl":null,"url":null,"abstract":"This paper proposes a new fourth-order dc-dc boost converter, developed as an improved version of the traditional Zeta converter, the main advantages of the proposed quasi-zeta converter are: (i) it can be constructed with a commercial half-bridge transistors package, in contrast with the traditional Zeta converter in which the diode and transistor are not connected to the same node, this characteristic makes easier constructing a high power converter with the proposed configuration, (iii) inductors drain a current smaller than the input current, which reduces the size of inductors, finally, (iii) both input and output current are non-pulsating, which reduces the possibility of having EMI problems. Converter design expressions are formulated with a time-domain analysis. The large signal non-linear model is provided along with a linear small-signal approximation. A comparative evaluation shows the proposed converter requires 55% to the energy stored in inductors to comply with a required input current ripple in comparison with the super-boost converter. Experimental results are provided to verify the principle of the proposed converter.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new fourth-order dc-dc boost converter, developed as an improved version of the traditional Zeta converter, the main advantages of the proposed quasi-zeta converter are: (i) it can be constructed with a commercial half-bridge transistors package, in contrast with the traditional Zeta converter in which the diode and transistor are not connected to the same node, this characteristic makes easier constructing a high power converter with the proposed configuration, (iii) inductors drain a current smaller than the input current, which reduces the size of inductors, finally, (iii) both input and output current are non-pulsating, which reduces the possibility of having EMI problems. Converter design expressions are formulated with a time-domain analysis. The large signal non-linear model is provided along with a linear small-signal approximation. A comparative evaluation shows the proposed converter requires 55% to the energy stored in inductors to comply with a required input current ripple in comparison with the super-boost converter. Experimental results are provided to verify the principle of the proposed converter.