An Upper Bound on Checking Test Complexity for Almost All Cographs

O. V. Zubkov, D. Chistikov, A. A. Voronenko
{"title":"An Upper Bound on Checking Test Complexity for Almost All Cographs","authors":"O. V. Zubkov, D. Chistikov, A. A. Voronenko","doi":"10.1109/SYNASC.2011.44","DOIUrl":null,"url":null,"abstract":"The concept of a checking test is of prime interest to the study of a variant of exact identification problem, in which the learner is given a hint about the unknown object. A graph F is said to be a checking test for a co graph G iff for any other co graph H there exists an edge in F distinguishing G and H, that is, contained in exactly one of the graphs G and H. It is known that for any co graph G there exists a unique irredundant checking test, the number of edges in which is called the checking test complexity of G. We show that almost all co graphs on n vertices have relatively small checking test complexity of O(n log n). Using this result, we obtain an upper bound on the checking test complexity of almost all read-once Boolean functions over the basis of disjunction and parity functions.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The concept of a checking test is of prime interest to the study of a variant of exact identification problem, in which the learner is given a hint about the unknown object. A graph F is said to be a checking test for a co graph G iff for any other co graph H there exists an edge in F distinguishing G and H, that is, contained in exactly one of the graphs G and H. It is known that for any co graph G there exists a unique irredundant checking test, the number of edges in which is called the checking test complexity of G. We show that almost all co graphs on n vertices have relatively small checking test complexity of O(n log n). Using this result, we obtain an upper bound on the checking test complexity of almost all read-once Boolean functions over the basis of disjunction and parity functions.
几乎所有图检验测试复杂度的上界
检查测试的概念对研究一种精确识别问题的变体具有重要意义,在这种问题中,学习者被给予关于未知物体的提示。图F是一个检查测试有限公司图G敌我识别其他公司图H存在F区分G和H的边缘,也就是说,包含在一个图G和H .众所周知,对于任何公司图G存在一个唯一irredundant检查测试,边的数量,被称为G .检查测试的复杂性,我们表明,几乎所有对n公司图顶点相对较小的检查测试的复杂性O (n log n)。使用这个结果,在析取函数和奇偶函数的基础上,我们得到了几乎所有读一次布尔函数的检验复杂度的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信