HeteroSync: A benchmark suite for fine-grained synchronization on tightly coupled GPUs

Matthew D. Sinclair, Johnathan Alsop, S. Adve
{"title":"HeteroSync: A benchmark suite for fine-grained synchronization on tightly coupled GPUs","authors":"Matthew D. Sinclair, Johnathan Alsop, S. Adve","doi":"10.1109/IISWC.2017.8167781","DOIUrl":null,"url":null,"abstract":"Traditionally GPUs focused on streaming, data-parallel applications, with little data reuse or sharing and coarse-grained synchronization. However, the rise of general-purpose GPU (GPGPU) computing has made GPUs desirable for applications with more general sharing patterns and fine-grained synchronization, especially for recent GPUs that have a unified address space and coherent caches. Prior work has introduced microbenchmarks to measure the impact of these changes, but each paper uses its own set of microbenchmarks. In this work, we combine several of these sets together in a single suite, HeteroSync. HeteroSync includes several synchronization primitives, data sharing at different levels of the memory hierarchy, and relaxed atomics. We characterize the scalability of HeteroSync for different coherence protocols and consistency models on modern, tightly coupled CPU-GPU systems and show that certain algorithms, coherence protocols, and consistency models scale better than others.","PeriodicalId":110094,"journal":{"name":"2017 IEEE International Symposium on Workload Characterization (IISWC)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2017.8167781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Traditionally GPUs focused on streaming, data-parallel applications, with little data reuse or sharing and coarse-grained synchronization. However, the rise of general-purpose GPU (GPGPU) computing has made GPUs desirable for applications with more general sharing patterns and fine-grained synchronization, especially for recent GPUs that have a unified address space and coherent caches. Prior work has introduced microbenchmarks to measure the impact of these changes, but each paper uses its own set of microbenchmarks. In this work, we combine several of these sets together in a single suite, HeteroSync. HeteroSync includes several synchronization primitives, data sharing at different levels of the memory hierarchy, and relaxed atomics. We characterize the scalability of HeteroSync for different coherence protocols and consistency models on modern, tightly coupled CPU-GPU systems and show that certain algorithms, coherence protocols, and consistency models scale better than others.
HeteroSync:在紧密耦合的gpu上进行细粒度同步的基准测试套件
传统上,gpu专注于流、数据并行应用,很少有数据重用或共享以及粗粒度同步。然而,通用GPU (GPGPU)计算的兴起使得GPU更适合具有更通用的共享模式和细粒度同步的应用程序,特别是对于具有统一地址空间和一致缓存的最新GPU。以前的工作已经引入了微基准来衡量这些变化的影响,但是每篇论文都使用自己的一组微基准。在这项工作中,我们将其中几个集合组合在一个套件中,即HeteroSync。异构同步包括几个同步原语、内存层次结构不同级别上的数据共享以及宽松的原子。我们描述了在现代紧密耦合的CPU-GPU系统上不同一致性协议和一致性模型的异构同步的可扩展性,并表明某些算法、一致性协议和一致性模型比其他算法、一致性协议和一致性模型的可扩展性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信