NUMERICAL QUADRATURES FOR NEAR-SINGULAR AND NEAR-HYPERSINGULAR INTEGRALS IN BOUNDARY ELEMENT METHODS

M. Carley
{"title":"NUMERICAL QUADRATURES FOR NEAR-SINGULAR AND NEAR-HYPERSINGULAR INTEGRALS IN BOUNDARY ELEMENT METHODS","authors":"M. Carley","doi":"10.3318/PRIA.2008.109.1.49","DOIUrl":null,"url":null,"abstract":"A method of deriving quadrature rules has been developed which gives nodes and weights for a Gaussian-type rule which integrates functions of the form: f(x,y,t) = a(x,y,t)/((x-t)^2+y^2) + b(x,y,t)/([(x-t)^2+y^2]^{1/2}) + c(x,y,t)\\log[(x-t)^2+y^2]^{1/2} + d(x,y,t), without having to explicitly analyze the singularities of $f(x,y,t)$ or separate it into its components. The method extends previous work on a similar technique for the evaluation of Cauchy principal value or Hadamard finite part integrals, in the case when $y\\equiv0$. The method is tested by evaluating standard reference integrals and its error is found to be comparable to machine precision in the best case.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2008.109.1.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A method of deriving quadrature rules has been developed which gives nodes and weights for a Gaussian-type rule which integrates functions of the form: f(x,y,t) = a(x,y,t)/((x-t)^2+y^2) + b(x,y,t)/([(x-t)^2+y^2]^{1/2}) + c(x,y,t)\log[(x-t)^2+y^2]^{1/2} + d(x,y,t), without having to explicitly analyze the singularities of $f(x,y,t)$ or separate it into its components. The method extends previous work on a similar technique for the evaluation of Cauchy principal value or Hadamard finite part integrals, in the case when $y\equiv0$. The method is tested by evaluating standard reference integrals and its error is found to be comparable to machine precision in the best case.
边界元法中近奇异积分和近超奇异积分的数值求积分
已经开发了一种推导正交规则的方法,该方法给出了高斯型规则的节点和权值,该规则集成了以下形式的函数:f(x,y,t) = A (x,y,t)/((x-t)^2+y^2) + b(x,y,t)/([(x-t)^2+y^2]^{1}/2) + c(x,y,t) \log[(x-t)^2+y^2] ^{1/}2 + d(x,y,t),无需明确分析$f(x,y,t)$的奇异性或将其分离为其分量。该方法扩展了先前对柯西主值或Hadamard有限部分积分的评估的类似技术的工作,在$y\equiv0$的情况下。通过计算标准参考积分对该方法进行了验证,结果表明,在最佳情况下,该方法的误差与机器精度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信