{"title":"ADAM: Automated Design Analysis and Merging for Speeding up FPGA Development","authors":"Ho-Cheung Ng, Shuanglong Liu, W. Luk","doi":"10.1145/3174243.3174247","DOIUrl":null,"url":null,"abstract":"This paper introduces ADAM, an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs, especially during the development process. ADAM has three key elements. First, a novel approximate maximum common subgraph detection algorithm with linear time complexity to maximize sharing of resources in the merged design. Second, a prototype tool implementing this common subgraph detection algorithm for dataflow graphs derived from Verilog designs; this tool would also generate the appropriate control circuits to enable selection of the original designs at runtime. Third, a comprehensive analysis of compilation time versus degree of similarity to identify the optimized user parameters for the proposed approach. Experimental results show that ADAM can reduce compilation time by around 5 times when each design is 95% similar to the others, and the compilation time is reduced from 1 hour to 10 minutes in the case of binomial filters.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper introduces ADAM, an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs, especially during the development process. ADAM has three key elements. First, a novel approximate maximum common subgraph detection algorithm with linear time complexity to maximize sharing of resources in the merged design. Second, a prototype tool implementing this common subgraph detection algorithm for dataflow graphs derived from Verilog designs; this tool would also generate the appropriate control circuits to enable selection of the original designs at runtime. Third, a comprehensive analysis of compilation time versus degree of similarity to identify the optimized user parameters for the proposed approach. Experimental results show that ADAM can reduce compilation time by around 5 times when each design is 95% similar to the others, and the compilation time is reduced from 1 hour to 10 minutes in the case of binomial filters.